## 2016 REPORT ON COMBINED TRANSPORT IN EUROPE

January 2017







# 2016 REPORT ON COMBINED TRANSPORT IN EUROPE



ISBN 978-2-7461-2580-3

## Warning

No part of this publication may be copied, reproduced or distributed by any means whatsoever, including electronic, except for private and individual use, without the express permission of the International Union of Railways (UIC). The same applies for translation, adaptation or transformation, arrangement or reproduction by any method or procedure whatsoever. The sole exceptions - noting the author's name and the source -are «analyses and brief quotations justified by the critical, argumentative, educational, scientific or informative nature of the publication into which they are incorporated» (Articles L 122-4 and L122-5 of the French Intellectual Property Code).

© International Union of Railways (UIC) - Paris, 2017.

## Table of contents

| Fore | eword by the UIC Combined Transport Group Chairman4                  |
|------|----------------------------------------------------------------------|
| 1.   | Rail/road combined transport in Europe at a glance5                  |
| 2.   | General framework and key elements of combined transport in Europe9  |
| 2.1. | Combined transport as major element of the European freight market9  |
| 2.2. | Market structure and key elements of combined transport13            |
| 3.   | The European rail/road combined transport market - facts and figures |
| 3.1. | Methodology and approach15                                           |
| 3.2. | Combined rail/road transport volumes16                               |
| 4.   | Spotlight analyses24                                                 |
| 4.1. | EU Rail Freight Corridors24                                          |
| 4.2. | Seaport activities and hinterland transportation                     |
| 4.3. | Market technology and digitalisation43                               |
| 4.4. | Market development in the (Eastern) Mediterranean and Russia49       |
| 5.   | Combined transport market assessment and outlook57                   |
| 6.   | Annexes                                                              |

## Foreword by the UIC Combined Transport Group Chairman



Now in its 6<sup>th</sup> edition, the 2016 Combined Transport report once more shows the continued expansion of combined transport across Europe. The European economy is already shifting to greener modes of transport, and this process now needs to be supported by meaningful action.

2016 was a year of consolidation for continental and maritime volumes, but also – indeed, especially – a year of growth for intercontinental markets, particularly as regards traffic to and from China. One of the leitmotifs here was "One Belt, One Road".

2016 also saw initial experience garnered with the rollout of the European freight corridors defined in Regulation 913/2010. Cohesion, harmonisation and coordination of action all stand to gain, whilst fuller integration of all stakeholders in the decision-making process can only be beneficial.

2017 will be an exciting year in many respects:

- Firstly at regulatory level, with the forthcoming revision procedure for Directive 92/106,
- Then at operational level, with the arrival in Germany of extra-long HGVs ("Lang-LKW"), gigaliners and other Eurotrailers,
- And lastly in design terms, with new aerodynamic designs being proposed for road vehicles.

This biannual report is a one-of-a-kind tool in that it supplies a time-series of practical data, enabling us to track developments in combined transport for over 10 years now. I would like to thank the members of the UIC Combined Transport Group and our partners, without whose input this report would not have been possible.

Quint

Eric Lambert

# 1. Rail/road combined transport in Europe at a glance



DEVELOPMENT OF TOTAL CT VOLUMES 2005 TO 2015 [M TEU]





International CT

## DEVELOPMENT CT VOLUMES BY MARKET SEGMENTS 2005 TO 2015 [M TEU]

Source: BSL Transportation Consultants, UIC. Rounding differences may occur

Domestic CT



## DEVELOPMENT CT VOLUMES BY MARKET SEGMENTS 2005 TO 2015 [M TONNES]

Source: BSL Transportation Consultants. UIC. Rounding differences may occur



### TRADE RELATIONS AND VOLUMES OF ACCOMPANIED CT IN 2015 [BASED ON NUMBER OF SHIPMENTS/TRUCKS]

| Country A |   | Volume   | Country B |   |           |
|-----------|---|----------|-----------|---|-----------|
| UK        |   | <u></u>  | . 🚛 1,48m |   | France    |
| Germany   |   |          | 0,29m     |   | Italy     |
| Austria   | = | <u> </u> | 0,13m     | * | Slovenia  |
| Austria   |   |          | 0,07m     |   | Italy     |
| France    |   |          | < 0,01 m  |   | Italy     |
| Greece    |   |          | < 0,01 m  | Ж | Macedonia |
| Macedonia | Ж |          | < 0,01m   | ġ | Serbia    |

Source: BSL Transportation Consultants

## EXPECTED FURTHER GEOGRAPHICAL MARKET POTENTIAL FOR CT (2014 TO 2016)



# 2. General framework and key elements of combined transport in Europe

## 2.1. Combined transport as major element of the European freight market

Combined transport represents an important cornerstone of the European freight market. According to the European **Council Directive 92/106/EEC**<sup>1</sup> combined transport (CT) is defined as follows:

Combined transport means the transport of goods

- between Member States where the lorry, trailer, semi-trailer, with or without tractor unit, swap body or container of 20 feet or more uses the road on the initial or final leg of the journey and, on the other leg, rail or inland waterway or maritime services where this section exceeds 100 km as the crow flies and make the initial or final road transport leg of the journey;
- between the point where the goods are loaded and the nearest suitable rail loading station for the initial leg, and between the nearest suitable rail unloading station and the point where the goods are unloaded for the final leg, or
- within a radius not exceeding 150 km as the crow flies from the inland waterway port or seaport of loading or unloading.

This report will focus on rail/road combined transport activities in Europe. For an overview of the countries examined see chapter 3.

Based on tonne-kilometres rail transport in Europe has a share of about 18% in total freight traffic – as Figure 1 shows. There is a slight increase of rail share in modal split within the last five years (2009 to 2014). Nevertheless, over a period of ten years there is nearly no development in rail transport.

<sup>1.</sup> However, there are plans currently to revise the Directive in near future.



## Figure 1: Development of rail share in modal split of European freight transport (in tkm, EU-28)



Particularly in Central European countries, due to their character as major transit regions, rail has a larger share in modal split; e.g. Switzerland or Austria have a respective rail share of more than 40% of the inland freight transport. But also in North-Eastern Europe the rail transport has a share of more than a quarter of total transport activities, as shown in Figure 2. As the share is measured in tonne-kilometres, the nature of cargo transported also affects the statistics. This is, for example, the case in Finland or Eastern European countries where traditionally a lot of heavy bulk cargo is transported by rail.

Compared to 2012 especially Spain, Denmark and Slovenia could noticeably increase the rail share, while in Croatia rail transportation lost market share.



Figure 2: Rail modal split of freight transport in Europe (% in total inland freight tkm) in 2014

Source: Eurostat (2016), BSL Transportation analysis.

The following Figure 3 depicts that the total absolute volume of goods transported by rail in Europe (in 1,000 t, million tkm) in 2015 is nearly the same like ten years before, experiencing several fluctuations over the years, particularly in the context of the financial crisis 2009<sup>2</sup>.

Despite the slight decline in overall rail traffic of all market segments (including "conventional" wagonload traffic and intermodal traffic), the market segment of intermodal rail transportation developed particularly well during the last decade.

<sup>2.</sup> Methodology: The development in total rail freight transport performance of selected major European countries has been compared with the development of the annual railway transport of goods in intermodal transport units (thereof containers and swap bodies). This basically corresponds to the market segment of unaccompanied combined transport. Selection has been based on availability of time series in Eurostat, single years interpolated or estimated. Country sample includes CZ, DK, DE, EE, EI, EL, ES, FR, HR, IT, LT, HU, NL, AT, PL, PT, RO, SI, SL, FI, SE, UK, NO and TR.



Figure 3: Development of total rail freight performance vs. rail transport of goods in intermodal transport units in Europe (Index 2005 = 100)

Source: Eurostat (2014), BSL Transportation analysis.

In terms of tonnes as well as in tonne-kilometres there was a significant total growth in intermodal rail freight volume between 2005 and 2015. Conventional rail freight traffic, on the contrary, remained nearly at the same level. Particularly the single wagonload segment has been experiencing a significant decrease in volume for some time now due to a rationalisation and reduction of services.

Major drivers for the fast growth of rail freight transport in intermodal units were:

- an increase in intermodal hinterland transportation, which was positively influenced by the dynamic development in container throughput at European seaports during the last decade, and
- the rising number of international transport services. Here intermodal transport benefited from the standardisation in railway infrastructure and by improvements regarding the interoperability on the European rail network, which both facilitated cross-border traffic.

However the positive development of intermodal rail freight faltered in 2015. The figures with a slight regress compared to 2014, showing that the positive development over the last decade is not for granted. The combined transport market also has to improve constantly to stay competitive in Europe in the future – even in times of increasing cost advantages of road transport especially by declining diesel prices within the last three years.

## 2.2. Market structure and key elements of combined transport

Basically, combined transport can be differentiated based on:

- the form of transport offered,
- the geographical scope, and
- the focus of the transport chain.

The basic segmentation in the form of transport offered focused on whether the combined rail/road transport is carried out accompanied (with a truck driver) or unaccompanied (without a truck driver) during the rail transport of the loading unit. Both unaccompanied as well as accompanied combined transport can be distinguished applying a strictly territorial principle related to the geographical scope of the transport of a CT loading unit. These market segments differentiates whether domestic or international ("cross-border") CT services are carried out.

It has to be considered, that for specific cases there could be an inaccurateness, as the primary origin or final destination of the goods are not necessarily the specific countries taken into account. For instance, "domestic" goods could arrive from or be forwarded to another country, by road pre- or post-carriage or in case of gateway services, without knowledge of the CT provider. In international transport the goods transported could also originate from or go to a third country with the pre- or on-carriage. Lastly, the combined transport market can also be segmented based on the focus of the transport chain, i.e. continental or maritime:

Continental CT concerns both cargo originating from or being destined for locations within Europe. Maritime CT involves trans-continental cargo routed over a seaport to or from an inland destination. Whereas Continental CT uses particularly domestic freight containers, 45' non-ISO containers, swap bodies and semi-trailers, equipment used in Maritime CT are almost exclusively standard ISO containers (8' wide, 8'6'' high, 20', 40' or 45' long). There are also differences in the scope of logistical services: Continental CT are mainly terminal-to-terminal services but also more and more pre- and post-haulage on road. Maritime CT on the other hand usually are port-to-door services including supplementary logistics services such as pre- or on-carriage by road, customs clearance or empty depot services.

The named differentiations result in six market segments of combined transport (see Figure 4) which are further examined in this report.



#### Figure 4: Overview of market segments in rail/road combined transport

Source: BSL Transportation.

Combined transport services are provided by CT operators who act as independent intermediaries or brokers between railway companies and potential customer groups. They purchase transport capacity from rail companies with volumes ranging from a wagon-by-wagon basis up to full trains for multiple customers or company trains for a single customer. Increasingly, other stakeholder groups such as railway undertakings, logistics service providers, shippers, terminal or port operators which act as CT operators<sup>3</sup> also offer CT services.

Although the business model of the "classical" CT operator still prevails in the European market, the trend of past years towards more logistics service providers taking over the operator role continues, particularly in Western Europe. Key target customer groups of CT services are shippers, shipping lines, logistics service providers and truck companies. Other relevant players in the CT market are seaports or CT terminals among others (e.g. inland ports).

In order to gather a comprehensive overview of the current situation of combined transport in Europe, up-to-date information on rail/road combined transport volumes has been collected by means of a survey for CT providers. The methodology and key results of the survey are presented in detail in the next chapter.

<sup>3.</sup> For a detailed analysis of the different business models see the report's 2012 edition.

# 3. The European rail/road combined transport market - facts and figures

## 3.1. Methodology and approach

The report provides an overview of combined transport in Europe in regards to:

- the actual volume of overall combined transport volumes,
- the development of market structures,
- the use of market technologies and
- the estimation of future developments.

All relevant market players in Europe were asked for specific data about their companies and its CT activities in terms of volumes, geographical scope and a market assessment. The participants represent Combined Transport-activities in more than 30 European countries from Portugal to Russia and from Norway to Turkey.

The figures are focussed on the reference year 2015 and are evaluated and shown anonymously. All figures for combined transport are based on the above CT definition and focus on rail/ road-services.

The presentation of an overall market overview certainly represents a challenge due to the facts that:

- there is no existing database of the European combined transport market at present,
- data compilation, counting methodology and definitions differ among the stakeholders.

In order to master the challenge and to provide a solid methodology, this report is based on different complementary sources which also include a plausibility check:

- desk research involving the most relevant data sets and statistics for the different market segments,
- a comprehensive data base from a questionnaire for all relevant market players,
- a matching with UIRR-database,
- additional checks, bilateral discussions and adjustments in case of implausibility.

In 2015 for instance a couple of substantial CT operators change their approach and classification to measure volumes. On the one hand the revised methodologies should lead to improved data quality and reduced double counts of CT activities (especially between CT operators and railway undertakings and in case of different providers for bidirectional cross-national transports). On the other hand the volumes of previous years are not fully comparable to current figures of 2015.

In total data volumes of more than 100 operators with combined transport activities in approximately 30 European countries are included in this report.

Based on this procedure coherence in terms of market volumes and market development is ensured. Changes within the market by new foundations, changes of names, mergers and acquisitions as well as closures of businesses were also taken into account within the report.

## 3.2. Combined rail/road transport volumes

The total volume of combined transport in Europe, including unaccompanied and accompanied CT, adds up to 21.0m TEU in 2015. Compared to 2013, the total CT volume recorded a slight increase of +1% (see Figure 5).





Source: BSL Transportation analysis, UIRR.

Based on the total CT tonnage transported, the increase amounts to approx. +8.5% from 2013 to 2015 and is therefore considerably higher than the growth in TEU. The positive development of the overall CT market is the same for both measurements in TEU and in tonnes. However, the stronger growth of tonnes in contrast to TEU indicates a trend towards transporting heavier shipments than some years ago. The following table depicts the total CT market development from 2005 to 2015.

| Segment                    | 2005  | 2007  | 2009  | 2011  | 2013  | 2015  |
|----------------------------|-------|-------|-------|-------|-------|-------|
| CT volume<br>unaccompanied | 145.5 | 181.5 | 164.6 | 191.8 | 203.0 | 218.0 |
| CT volume<br>accompanied   | 10.2  | 13.6  | 15.1  | 14.9  | 10.8  | 13.0  |
| Total                      | 155.7 | 195.1 | 179.7 | 206.7 | 213.8 | 231.0 |

| Table | 1: Develo | pment of | total CT | volumes   | 2005 to | 2015 | in million | tonnes  |
|-------|-----------|----------|----------|-----------|---------|------|------------|---------|
| iabio | 11 001010 |          |          | 101011100 | 2000 10 |      |            | connooj |

Source: BSL Transportation analysis, UIRR.

The total CT market increase is mainly driven by volumes of the unaccompanied segment, while the accompanied CT volume increased in tonnage and is approaching the level of 2011. In 2015, the unaccompanied CT segment's market share amounts to approx. 94% of the total CT market.

Consequently, nearly 90% of the CT providers offer unaccompanied CT services, while only 1% is focused on accompanied CT and approx. 10% provide both unaccompanied and accompanied CT services.

## **Unaccompanied combined transport**

The continuous growth of unaccompanied combined transport since the downturn in volumes due to the global economic crisis in 2009 has continued in the past two years. However, the volume increase in the CT market is lower than some years ago and the development of combined transport matches the average of the overall rail freight trend (see chapter 2.1).

The market segment of international combined transport is still the main driver for this development with an increase of about 6% (see Figure 6). Although there is a slight decrease of -1% compared to 2013 unaccompanied domestic CT continues to be the biggest market segment of CT with 11.6m TEU transported in 2015.

In cross-border CT, maritime and continental transportation grew nearly parallel by +7% and +5% respectively.



#### Figure 6: Development of domestic and international unaccompanied CT 2005 to 2015 [in million TEU]

Source: BSL Transportation analysis, UIRR.

The volume increase in the market development in tonnes is considerably higher for both the domestic and the international unaccompanied CT market from 2013 to 2015 (see Figure 7). Consequently, the average loading units have become heavier in the past two years.

**Domestic CT** 



#### Figure 7: Development of domestic and international unaccompanied CT 2005 to 2015 [in million tonnes]

International CT

Source: BSL Transportation analysis, UIRR.

In domestic unaccompanied CT, the TOP 10 countries account for more than 85% of the total European domestic market. Table 2 shows the domestic unaccompanied CT of European countries for 2015 and 2013.

|                           | Unaccompanies domestic CT by countries |           |                            |            |            |                            |  |  |
|---------------------------|----------------------------------------|-----------|----------------------------|------------|------------|----------------------------|--|--|
|                           |                                        | TEU       |                            |            | Tonnes     |                            |  |  |
| Country                   | 2013                                   | 2015      | Development<br>(2013-2015) | 2013       | 2015       | Development<br>(2013-2015) |  |  |
| Austria                   | 370,205                                | 400,993   | 8%                         | 3,593,138  | 4,409,791  | 23%                        |  |  |
| Belgium                   | 294,261                                | 202,718   | -31%                       | 2,177,167  | 1,273,904  | -41%                       |  |  |
| Bosnia and<br>Herzegowina | -                                      | 1,401     |                            | -          | 14,015     |                            |  |  |
| Bulgaria                  | -                                      | 32,834    |                            | -          | 330,059    |                            |  |  |
| Croatia                   | 24,651                                 | 40,231    | 63%                        | 332,254    | 269,633    | -19%                       |  |  |
| Czech Republic            | 484,500                                | 499,843   | 3%                         | 5,215,181  | 5,379,001  | 3%                         |  |  |
| Denmark                   | -                                      | 287       |                            | -          | 2,837      |                            |  |  |
| Finland                   | 10,400                                 | 10,717    | 3%                         | 125,000    | 128,813    | 3%                         |  |  |
| France                    | 631,086                                | 663,419   | 5%                         | 5,716,155  | 6,245,535  | 9%                         |  |  |
| Germany                   | 4,007,646                              | 3,334,870 | -17%                       | 37,139,367 | 35,629,640 | -4%                        |  |  |
| Greece                    | -                                      | 4,122     |                            | -          | 51,525     |                            |  |  |
| Hungary                   | 46,438                                 | 3,109     | -93%                       | 462,840    | 41,362     | -91%                       |  |  |
| Ireland                   | -                                      | 25,982    |                            | -          | 311,790    |                            |  |  |
| Italy                     | 1,609,472                              | 1,554,882 | -3%                        | 12,921,434 | 12,318,072 | -5%                        |  |  |
| Latvia                    | -                                      | 589       |                            | -          | 1,300      |                            |  |  |
| Netherlands               | 366,836                                | 326,639   | -11%                       | 3,544,381  | 3,958,563  | 12%                        |  |  |
| Norway                    | 386,859                                | 322,815   | -17%                       | 3,712,541  | 3, 172,657 | -15%                       |  |  |
| Poland                    | 464,938                                | 719,079   | 55%                        | 4,117,769  | 5,913,613  | 44%                        |  |  |
| Portugal                  | 214,471                                | 290,731   | 36%                        | 2,117,525  | 2,896,420  | 37%                        |  |  |
| Romania                   | 256,127                                | 262,407   | 2%                         | 3,087,754  | 3,163,094  | 2%                         |  |  |
| Russia                    | -                                      | 32        |                            | -          | 136        |                            |  |  |
| Serbia                    | -                                      | 13,892    |                            | -          | 138,922    |                            |  |  |
| Slovakia                  | 55,832                                 | 54,112    | -3%                        | 473,892    | 482,377    | 2%                         |  |  |
| Slovenia                  | 66,734                                 | 66,836    | 0%                         | 507,979    | 508,756    | 0%                         |  |  |
| Spain                     | 490,064                                | 503,697   | 3%                         | 4,750,169  | 5,194,814  | 9%                         |  |  |
| Sweden                    | 425,900                                | 438,906   | 3%                         | 4,498,145  | 4,635,490  | 3%                         |  |  |
| Switzerland               | 342,546                                | 351,000   | 2%                         | 4,324,165  | 4,430,744  | 2%                         |  |  |
| United Kingdom            | 1,121,120                              | 1,446,514 | 29%                        | 19,171,147 | 24,955,867 | 30%                        |  |  |

## Table 2: Development of domestic unaccompanied CT per country [in TEU and tonnes]

Note: Figures for Poland partially include transit. Some deviations of 2015 to 2013 figures also due to modified statistics or changes in methodology of CT providers.

Source: BSL Transportation analysis, UIRR.

Just as in the past 4 years Germany continues to be the largest domestic CT market in terms of transport volume, followed by Italy and the United Kingdom which also have important domestic CT markets. However, both Germany and Italy has faced decreasing domestic CT markets in the past two years. Besides several reasons like railway strikes and infrastructure bottlenecks it must be pointed out, that the volumes of relevant central European players have changed due to modified approaches of measure volumes (see chapter 3.1).

Whereas the domestic CT market declined slightly between 2013 and 2015, the segment of international CT grew by +6%. The most relevant trade lanes still are the corridors from the North Range seaports to Italy and also trade relations on the East-West-axis keep increasing.

Table 3 provides an overview of the major trade relations in international unaccompanied CT and their volume in TEU and tonnes. The figures given for each trade relation cover the total volume transported in both directions.

| Trade lane     |                |           | TEU       |                  | Tonnes     |            |                  |  |
|----------------|----------------|-----------|-----------|------------------|------------|------------|------------------|--|
|                |                | 2013      | 2015      | Develop-<br>ment | 2013       | 2015       | Develop-<br>ment |  |
| Germany        | Italy          | 1,344,827 | 1,300,386 | -3%              | 15,792,121 | 17,012,547 | 8%               |  |
| Germany        | Netherlands    | 550,647   | 667,378   | 21%              | 5,632,196  | 6,215,813  | 10%              |  |
| Germany        | Czech Republic | 700,053   | 659,792   | -6%              | 6,257,721  | 6,000,182  | -4%              |  |
| Belgium        | Italy          | 682,452   | 448,653   | -34%             | 7,925,357  | 5,643,471  | -29%             |  |
| Czech Republic | Slovakia       | 292,719   | 316,845   | 8%               | 2,568,714  | 2,927,300  | 14%              |  |
| Germany        | Austria        | 349,912   | 268,860   | -23%             | 3,603,502  | 3,090,075  | -14%             |  |
| Slovakia       | Slovenia       | 156,023   | 258,921   | 66%              | 1,043,331  | 1,887,370  | 81%              |  |
| Germany        | Hungary        | 167,328   | 241,296   | 44%              | 1,820,804  | 2,322,884  | 28%              |  |
| Czech Republic | Poland         | 199,994   | 231,041   | 16%              | 1,771,949  | 2,020,219  | 14%              |  |
| France         | Italy          | 201,080   | 194, 123  | -3%              | 2,335,242  | 2,371,238  | 2%               |  |
| Sweden         | Germany        | 151,339   | 193,878   | 28%              | 1,639,185  | 2,067,542  | 26%              |  |
| Hungary        | Slovenia       | 166,823   | 179,215   | 7%               | 1,692,925  | 1,597,440  | -6%              |  |
| Luxemburg      | France         | 119,264   | 178,766   | 50%              | 1,715,404  | 2,281,597  | 33%              |  |
| Germany        | Spain          | 136,212   | 174,381   | 28%              | 1,855,066  | 2,312,509  | 25%              |  |
| Netherlands    | Italy          | 298,696   | 168,572   | -44%             | 3,169,014  | 1,924,664  | -39%             |  |
| Germany        | Poland         | 245,248   | 160,475   | -35%             | 2,178,846  | 1,274,739  | -41%             |  |
| Germany        | Switzerland    | 164,057   | 148,188   | -10%             | 1,633,675  | 1,871,791  | 15%              |  |
| Belgium        | France         | 124,266   | 131,878   | 6%               | 900,216    | 1,128,225  | 25%              |  |
| Belgium        | Germany        | 182,251   | 54,567    | -70%             | 1,842,848  | 560,402    | -70%             |  |

Table 3: Major European trade lanes in international unaccompanied CT [in million TEU and tonnes]

Source: BSL Transportation analysis, UIRR<sup>4</sup>.

Although the positive overall development of the international unaccompanied CT market is also reflected in the top European trade lanes there are some notable specific shifts, such as the ongoing positive development on the international trade relations in particular between Eastern European countries (see above).

The full O-D-matrix with all trade lanes in international unaccompanied CT in Europe (in TEU and tonnes) is provided in the Annex.

The domestic and international market segments shows some similarities regarding the structure of loading unit (see Figure 8). In both segments between 48% and 55% of the intermodal loading units used are twenty- and fourty-foot equivalent units.

In international services, however, the share of semitrailers continues much higher than in domestic combined transport.

<sup>4.</sup> Complete Origin-Destination-Matrix TEU/ Tonnes can be found in the Annexes.



## Figure 8: Loading unit structure in combined transport

Source: BSL Transportation analysis. Samples between 1/4 and 1/5 of the market volume 2015. Note: Rounding differences may occur.

## Accompanied combined transport

Accompanied combined transport is a niche market with a volume of approximately 0.74m TEU transported across Europe in 2015, which is nearly 8% less than two years before. An additional volume of 1.484 million trucks (equalling 742 thousand TEU) is related to Cross-Channel transport activities between UK and France.

Accompanied transport services are provided by ten companies with very small accompanied CT volumes transported in some cases.

The market segment of accompanied transport has its focus on several international trade relations across the Alps between:

- Germany and Italy,
- Austria and Slovenia and
- Austria and Italy.

Some combined transport activities from Austria to Italy and from France to Italy are also conducted in the accompanied system. In addition, several smaller accompanied CT services were offered between Macedonia and Greece/Serbia with less than 10,000 trucks in 2015. Figure 9 gives an overview of the trade relations and volume structure of accompanied Combined Transport in 2015.



Figure 9: Trade relations and volumes of accompanied CT in 2013 [based on number of shipments/trucks]

Source: BSL Transportation analysis, UIRR.

Furthermore, there is the above-mentioned Cross-Channel accompanied freight traffic between the United Kingdom (Folkestone) and France (Calais) with a total volume of nearly 1.5m trucks passing the Eurotunnel in 2015 (see Table 4)<sup>5</sup>.

Table 4: Accompanied Cross-Channel transport between UK and France [number of trucks]

| Eurotunnel                   | Trucks    |           |           |  |  |  |  |
|------------------------------|-----------|-----------|-----------|--|--|--|--|
| Luiotuiniei                  | 2011      | 2013      | 2015      |  |  |  |  |
| Cross-Channel<br>UK - France | 1.263.327 | 1.362.849 | 1.483.941 |  |  |  |  |

Source: Eurotunnel Group

Compared to 2013, the Eurotunnel freight activities in 2015 increased by +8.8% - divergent to the overall accompanied market trend on the European continent.

Domestic accompanied CT services operated in 2015 mainly focused on Austria (more than 300 thousand TEU), Switzerland (approx. 10 thousand TEU) and Macedonia (9 thousand TEU).

Altogether, the total accompanied CT market developed as follows (see Table 5). Particularly in the international market segment, volumes dropped compared to the 2013 figures and particularly compared to the figures of 2011. Based on tonnes the volume also decrease compared to 2011, but increase since 2013.

| Table 5: Development of domestic and internation | al accompanied CT | market [in TEU and to | onnes] |
|--------------------------------------------------|-------------------|-----------------------|--------|
|--------------------------------------------------|-------------------|-----------------------|--------|

|                  |           | TEU     |         |                  | Tonnes     |            |            |                  |
|------------------|-----------|---------|---------|------------------|------------|------------|------------|------------------|
| Country          | 2011      | 2013    | 2015    | Develop-<br>ment | 2011       | 2013       | 2015       | Develop-<br>ment |
| Domestic CT      | 347, 530  | 303,668 | 303,642 | 0%               | 5,421,430  | 4,873,801  | 6,044,886  | 24%              |
| International CT | 662,650   | 498,883 | 438,591 | -12%             | 9,448,570  | 5,933,825  | 6,920,760  | 17%              |
| Total            | 1,010,180 | 802,551 | 742,233 |                  | 14,870,000 | 10,807,626 | 12,965,646 |                  |

Source: BSL Transportation analysis, UIRR.

5. In order to keep the total volume of accompanied CT comparable to former UIC reports, where Channel Tunnel data was not considered, the Cross-Channel Tunnel accompanied CT volumes are displayed separately.

The overall decline in accompanied CT during the last years can mainly be traced back to a restructuring of the Austrian market and Rail Cargo Austria (RCA). In this context, relevant market players in accompanied CT either stopped their business activities completely (Hungarokombi), extensively reorganised their services or were integrated into RCA.

## 4. Spotlight analyses

## 4.1. EU Rail Freight Corridors

Based on Regulation 913/2010 concerning a European Rail Network for Competitive Freight, nine **EU Rail Freight Corridors (RFCs)** have been established by the European Commission in order to strengthen the competitiveness of the European rail freight network and to improve cross-border rail traffic in terms of infrastructure harmonisation, management and investments. Of the nine Rail Freight Corridors (see Figure 10) six RFCs had already been launched in November 2013, while the remaining three corridors (RFCs No. 3, 5 and 8) were implemented in November 2015.





Source: RailNet Europe (2016).

Since a key objective of the Rail Freight Corridors is to foster intermodality between rail and other transport modes by integrating terminals into the corridor management and development, the implementation of RFCs is of particular importance for the rail/road combined transport market.

For this reason, this report is - like the last reports' edition two years ago - paying special attention to the nine RFCs. The three corridors implemented in November 2015 are analysed in regards to:

- Volume assessment and main origins of the goods transported,
- Market share of each corridor (modal split),
- Relevance of intermodal transport on the respective corridor.

For the other six Rail Freight Corridors implemented in 2013 updated analyses are provided, including:

- up-to-date information on corridor development (Key Performance Indicators, e.g. volumes, no. of trains, punctuality), and
- comparison with data from the 2014 report where possible –

The assessment of rail corridor implementation for Combined Transport by CT providers complements the RFC analysis<sup>6</sup>.

The transport market studies refer to data from the year 2012. Therefore we focus on this reference year (unless otherwise stated). Transport volumes and modal split information mainly focus on tonnage. In the following, the basic corridor characteristics relevant for the CT market are presented for RFC 3, 5 and 8. In addition, for each of the three corridors operational since November 2015 a list of terminals which are integrated into the corridor is presented.

<sup>6.</sup> For examining the three RFCs operational since 2015, data has been collected from the corridor implementation plans and transport market studies published for each of the corridors. Nevertheless, the depth of analysis and extent of data varies from corridor to corridor and they are, therefore, only partially comparable. Further differentiation of the modal split for rail traffic on the corridors in intermodal and other services (e.g. single wagon-load) is only available in some cases: The figures on the different rail market segments/types of trains given for the corridors are based on the corridor-specific transport market studies and their respective definitions. For further information on the particular definitions and terms we therefore refer to the individual RFC corridor offices.



Figure 11: Key corridor characteristics of Rail Freight Corridor 3 (Scandinavian-Mediterranean Corridor)

Source: BSL Transportation Consultants Research, RFC3 Implementation Plan, RFC3 Transport Market Study.





For the six Rail Freight Corridors which are already operational since November 2013 first conclusions on corridor development and performance can be drawn. The Key Performance Indicators (KPIs) defined for the corridors may provide evidence on corridor development. Nevertheless, the availability of data on corridor performance, the KPIs used and their measurement vary between the six corridors as the following table depicts:

| КРІ                                          | RFC1<br>Rhine-<br>Alpine | RFC 2<br>North Sea-<br>Med | RFC 4<br>Atlantic | RFC6<br>Mediter-<br>ranean | RFC 7<br>Orient - Med | RFC 9<br>Czech-<br>Slovak |
|----------------------------------------------|--------------------------|----------------------------|-------------------|----------------------------|-----------------------|---------------------------|
| Capacity                                     |                          |                            |                   |                            |                       |                           |
| Offered capacity / PaPs <sup>1</sup>         | $\checkmark$             | $\checkmark$               | $\checkmark$      | $\checkmark$               | $\checkmark$          | $\checkmark$              |
| Requested capacity / PaPs                    | $\checkmark$             | $\sim$                     | ×                 | $\checkmark$               | $\checkmark$          | ×                         |
| Allocated capacity / PaPs                    | $\checkmark$             | $\checkmark$               | $\checkmark$      | $\checkmark$               | $\checkmark$          | $\checkmark$              |
| Reserve capacity                             | ×                        | $\sim$                     | ×                 | $\sim$                     | $\sim$                | $\sim$                    |
| Allocated reserve capacity                   | ×                        | $\checkmark$               | ×                 | $\checkmark$               | $\checkmark$          | ×                         |
| Conflicting PaPs/ double bookings            | $\checkmark$             | $\checkmark$               | ×                 | $\checkmark$               | ×                     | ×                         |
| Traffic / Performance                        |                          |                            |                   |                            |                       |                           |
| Corridor int. traffic volume (No. of trains) | $\checkmark$             | $\checkmark$               | $\checkmark$      | ×                          |                       | $\checkmark$              |
| Modal split of freight traffic               | $\checkmark$             | ×                          | ×                 | ×                          | ×                     | ×                         |
| Ton-km (average)                             | ×                        | $\sim$                     | ×                 | ×                          | ×                     | ×                         |
| Corridor punctuality (ratio/ no. of trains)  | $\checkmark$             | $\checkmark$               | $\checkmark$      | $\checkmark$               | $\bigcirc^2$          | $\checkmark$              |
| Commercial train speed                       | $\checkmark$             | $\checkmark$               | $\checkmark$      | ×                          | ×                     | $\checkmark$              |

Table 6: Availability of selected KPIs for RFC development and performance analysis

1) Pre-arranged train path - dedicated capacity for international rail freight, published in a path catalogue for the following timetable 2) Mentioned in RFC annual report, but no data published

Source: BSL Transportation Consultants Research, RFC Implementation Plans, RFC Annual Reports

For several reasons, the first evidence on corridor development and performance presented in the following is limited and thus has to be handled with care:

- Owing to the short time period covered (only two years of operation so far), the existing data on corridor performance have only limited significance as most RFC objectives are set for the long-term,
- As shown above, the structure of data on corridor performance, the KPIs published and their measurement are only partly harmonized between the different corridors, so that database and level of detail of evaluation differ significantly among corridors (from a selection of KPIs published in the Annual Report to a detailed Report of Results),
- Not all KPIs mentioned in the Implementation Plan or Annual Report of a specific corridor are published,
- For most corridors, the 2010 transport market studies have not yet been updated so far in terms of volumes. According to information from corridor representatives a general update for all corridors in one study is planned for 2017/18.

In addition to their annual reports, the corridors have conducted yearly satisfaction surveys to measure the satisfaction level of their users. The survey results can be retrieved at the specific corridor websites.







#### Corridor development of Rail Freight Corridor 4 (Atlantic Corridor)

| 2015                  |         | ∑ IT @ FR/SP &<br>SP/PT borders |       |             |
|-----------------------|---------|---------------------------------|-------|-------------|
| 2010                  | FR      | /SP                             | SD/DT | IT distance |
|                       | FR side | SP side                         | SP/P1 | > 500 km    |
| Paths reserved        | 3.482   | 3.698                           | 2.563 | 6.261       |
| Trains running        | 2.401   | 2.669                           | 2.050 | 4.719       |
| % running trains      | 69,0%   | 72,2%                           | 80,8% | 75,4%       |
| Trains delayed >30min | 303     | 668                             | 876   | 1544        |
| % delayed trains      | 12,6%   | 25,0%                           | 42,7% | 32,7%       |



#### RFC4 Corridor punctuality [2015]<sup>2</sup>



%

<sup>2)</sup> Punctuality of international traffic 2015 at the border (delay <30 min)

#### **Additional Information**

- The goal is a triplication of international rail traffic in the next 20 years by
- increasing the capacity offer for the next timetable 2017/2018
- improving the performance of the PaP between Germany and the French/Spanish border and Portugal and Spain
- To improve the train performance management, RFC4 plans to
  - improve the data quality
  - record a bigger number of trains
  - allow effective punctuality monitoring





## 34


As stated above, one key objective of the corridors is to promote rail freight transport in Europe, increasing the rail share on the transport market. Therefore – as in the last report's edition – the survey participants were again asked for their assessment of EU Rail Freight Corridors implementation.

Compared to the results two years ago, overall the survey participants still remain quite optimistic regarding the positive impact from Rail Freight Corridor implementation on combined transport volumes. Nevertheless, more respondents only have answered "agree" instead of "strongly agree" the first years of operation.



Figure 12: Assessment of EU Rail Freight Corridor implementation by survey participants

Source: BSL Transportation analysis. Note: No consideration of the statement "no comment". Rounding differences may occur.

As the RFC objectives regarding rail freight volume and modal split development are set for the long-term and a notable shift takes its time, a positive impact will most probably become obvious only after a longer period of corridor operation.

### 4.2. Seaport activities and hinterland transportation

Maritime or hinterland CT continues to be a key segment of the European CT market which is closely related to the development of seaborne container throughput volumes at major seaports. For this purpose, the development of port traffic in major European seaports provides relevant information on general trends for the CT market, also highlighting prospects for further development.



Figure 13: Development of container throughput 2015 vs. 2013 in major European container ports [in million TEU]

Source: BSL Transportation analysis, various port authorities, ESPO, Drewry, Eurostat. Note: Only mainland Europe, without port of Tanger.

Among the four North Range ports, the development of container handling volumes between 2013 and 2015 varied. While Antwerp and Rotterdam gained container throughput volumes, Hamburg and Bremerhaven witnessed a decline, mainly due to less transhipment traffic.

While several Mediterranean ports have grown significantly Baltic ports but also Odessa were severely affected by the Russian crisis and lost volumes.

For the CT market, the assessment of rail's market share of hinterland transportation of a certain port is particularly relevant. Its development (and thus the rail volume to and from the port) does not necessarily coincide with the development of total container throughput. This is particularly the case, if changes in volume primarily affect only transhipment/ feeder traffic.

The following figure gives an overview of rail's share<sup>7</sup> of hinterland container transport (only gateway traffic) of selected European ports in 2015.

<sup>7.</sup> The rail share can either be calculated as a share of total seaborne container throughput or as a share of hinterland transportation, only taking into account the port's gateway traffic (total seaborne container throughput less sea-sea-transhipment container volume).



Figure 14: Rail share of container hinterland transport (only gateway traffic) in selected European ports 2015

Source: BSL Transportation analysis, various port authorities, in single cases estimates<sup>8</sup>

Notable rail modal split-shares of more than 30% for container gateway traffic can only be observed in German, British and Polish seaports as well as for Koper, Trieste and Sines.

For maritime CT, not only the current rail share is relevant, but also the development of rail's share over time as it may reveal an overall trend for a particular port's rail traffic. Table 7 shows the development of the rail shares of seaborne throughput and of hinterland transportation for selected European ports between 2012 and 2015. The full table on rail transport volume of selected European ports 2012-2015 (in TEU) is provided in the Annex.

In some ports, rail does not play any role in hinterland transportation at all (yet), which is often due to a missing rail connection or no adequate rail hinterland network. According to port information the steep increase in rail volume in Gdansk is caused by changes in the correlation of containers hinterland transport to/from the terminal. One of the major reasons for this situation is the method of hinterland transport calculation, which applies in all Polish ports.

<sup>8.</sup> Note: In single cases, rail shares and volumes projected from terminal operator data or estimated based on port container throughput in tonnes.

It has to be pointed out, however, that looking only at the ports' rail shares could be somewhat misleading. Owing to the role of feeder traffic (as the example of the port of Hamburg shows) the absolute rail volumes should also be taken into account. It may occur that the total rail transport volume actually increases, while the rail share remains stable. This is the case, for example, if a port witnesses a strong growth in total container throughput volume but which is mainly related to transhipment traffic. Typically, in ports with a transhipment hub function, rail's share of hinterland transportation will be higher than the rail share of total throughput.

| Seaport / Country                  |          |        | Rail     | share          |                | Rail share in hinterland transport |               |               |                |                |
|------------------------------------|----------|--------|----------|----------------|----------------|------------------------------------|---------------|---------------|----------------|----------------|
| Seaport / Coun                     | try      | ofseab | orne con | tainer th      | roughput       |                                    | intern one    |               | iterraria i    | aanapon        |
|                                    |          | 2012   | 2013     | 2014           | 2015           |                                    | 2012          | 2013          | 2014           | 2015           |
| Algeciras                          | ES       | 0.2%   | 0.4%     |                |                |                                    | 1.8%          | 4.7%          |                |                |
| Alicante                           | ES       | 0.0%   | 0.0%     |                |                | 1 [                                | 0.0%          | 0.0%          |                |                |
| Ancona                             | IT       | 5.0%   | 5.0%     | 0.2%           | 0.0%           | 1 [                                |               |               | 2.1%           | 0.0%           |
| Antwerp                            | NL       | 7.1%   | 4.8%     | 4.3%           | 4.3%           | 1                                  | 9.0%          | 7.0%          | 7.0%           | 7.0%           |
| Barcelona                          | ES       | 8.5%   | 9.0%     | 10.0%          | 10.9%          | 1 [                                | 11.3%         | 10.7%         | 12.0%          | 12.7%          |
| Bilbao                             | ES       | 14.1%  | 17.0%    |                |                | 1 [                                |               |               |                |                |
| Bordeaux                           | FR       |        |          | 0.0%           | 0.0%           | 1 [                                |               |               | 0.0%           | 0.0%           |
| Bremerhaven                        | DE       | 17.0%  | 18.0%    | 19.0%          | 19.4%          | 1 [                                | 47.3%         | 46.6%         | 46.8%          | 46.4%          |
| Cádiz                              | ES       | 0.0%   | 0.0%     |                |                | 1                                  |               |               | 0.0%           | 0.0%           |
| Constantza                         | RO       | n/a    | n/a      | n/a            | n/a            | 1 [                                | n/a           | n/a           | n/a            | n/a            |
| Felixstowe                         | UK       |        | 22.4%    | 21.9%          | 22.5%          | 1 [                                |               | 28.0%         | 30.0%          |                |
| Gdansk                             | PL       | 12.6%  | 10.5%    | 10.6%          | 34.0%          |                                    | 34.4%         | 35.8%         | 32.6%          | 33.3%          |
| Gdynia                             | PL       |        | 22.2%    |                |                |                                    | 32.0%         | 41.0%         | 31.4%          | 33.2%          |
| Genova                             | IT       | 13.8%  | 14.9%    | 14.0%          | 13.6%          |                                    | 17.2%         | 17.8%         | 17.3%          | 16.8%          |
| Ghent                              | BE       | 8.0%   |          |                |                |                                    | 8.0%          |               |                |                |
| Gijón                              | ES       |        |          | 0.0%           | 0.0%           | 1                                  |               |               | 0.0%           | 0.0%           |
| Göteborg                           | SE       | 45.7%  | 45.8%    |                |                | 1                                  |               |               |                |                |
| Hamburg                            | DE       | 22.3%  | 22.8%    | 23.1%          | 26.1%          | 1                                  | 37.3%         | 39.3%         | 38.6%          | 41.0%          |
| Helsingborg                        | SE       |        |          | 13.0%          | 10.9%          | 1                                  |               |               | 13.0%          | 10.9%          |
| Helsinki                           | FI       | 2.1%   | 1.7%     | 1.4%           | 1.2%           | 1 1                                | 2.1%          | 1.7%          | 1.4%           | 1.2%           |
| Izmir                              | TR       | 14.8%  | 15.1%    | 12.2%          | 13.1%          | 1                                  | 12.4%         | 12.4%         | 9.2%           | 9.6%           |
| Klaipeda                           | LT       |        |          | 12.8%          | 10.7%          | 1                                  |               |               | 12.8%          | 10.7%          |
| Koper                              | SI       |        | 60.0%    | 54.5%          | 54.5%          | 1                                  |               | 60.6%         | 55.0%          | 55.0%          |
| La Spezia                          | IT       | 22.2%  | 22.7%    | 24.8%          | 23.4%          | 1 1                                | 24.0%         | 24.6%         | 26.7%          | 25.5%          |
| Le Havre                           | FR       | 4.3%   | 3.3%     | 3.4%           | 3.4%           | 1                                  | 5.2%          | 4.5%          | 4.7%           | 4.5%           |
| Leixões                            | PT       |        |          | 1.6%           | 0.9%           | 1                                  | 1.0%          | 1.0%          | 1.8%           | 1.0%           |
| Livorno                            | IT       | 12.2%  | 12.4%    | 11.5%          | 9.7%           | 1                                  | 12.8%         | 13.1%         | 12.8%          | 13.0%          |
| London/Tilbury                     | UK       |        |          | n/a            | n/a            | 1                                  |               |               | n/a            | n/a            |
| Lübeck                             | DE       |        |          | 37.4%          | 43.7%          | 1 1                                |               |               | 48.0%          | 56.0%          |
| Marsaxlokk                         | MT       |        |          | 0.0%           | 0.0%           | 1                                  |               |               | 0.0%           | 0.0%           |
| Nantes St-Nazaire                  | FR       |        |          | 0.0%           | 0.0%           | 1                                  |               |               | 0.0%           | 0.0%           |
| Odessa                             | UA       | 17.4%  | 15.7%    | 16.2%          | 17.8%          | 1                                  | 22.2%         | 22.0%         | 21.5%          | 22.4%          |
| Oslo                               | NO       |        |          |                |                | 1 1                                |               | 10.0%         |                |                |
| Ravenna                            | IT       | 11.2%  | 11.6%    |                |                |                                    | 11.7%         | 11.9%         |                |                |
| Riga                               | LV       | n/a    | 25.0%    | n/a            | 18.0%          |                                    | n/a           | 25.0%         | n/a            | 18.0%          |
| Rotterdam                          | NL       | 6.7%   | 6.8%     | 7.1%           | 7.2%           |                                    | 10.4%         | 10.5%         | 10.9%          | 10.5%          |
| Sines                              | PT       | 24.3%  | 14.8%    | 15.5%          | 15.7%          |                                    | 72.7%         | 66.1%         | 71.5%          | 73.6%          |
| Southampton                        | UK       |        |          |                | not publ.      |                                    |               |               | 35.0%          | 35.0%          |
| Tallinn                            | EE       | 21.5%  | 24.8%    | 27.2%          | 19.3%          |                                    | 21.6%         | 24.7%         | 27.2%          | 19.3%          |
| Tanger                             | MA       | 0.2%   | 0.2%     |                |                |                                    | 4.8%          | 6.3%          |                |                |
| Trieste                            | IT       |        |          | 18.2%          | 22.2%          | [                                  | 28.0%         | 30.0%         | 32.3%          | 37.3%          |
| Varna                              | BG       |        |          | 0.0%           | 0.0%           | 1                                  |               |               | 0.0%           | 0.0%           |
| Venezia                            | IT       | 0.7%   | 0.8%     |                |                |                                    | 0.7%          | 0.8%          |                |                |
| Vigo                               | PT       | 0.0%   | 0.0%     |                |                |                                    | 0.0%          | 0.0%          |                |                |
| Wilhelmshaven                      | DE       |        |          | 10.0%          | 10.0%          |                                    |               |               | 33.3%          | 33.3%          |
| Zeebrugge                          | BE       | 27.4%  | 24.2%    | 23.1%          | 24.7%          | 1                                  | 34.6%         | 29.1%         | 29.1%          | 26.3%          |
| vigo<br>Wilhelmshaven<br>Zeebrugge | DE<br>BE | 0.0%   | 24.2%    | 10.0%<br>23.1% | 10.0%<br>24.7% |                                    | 0.0%<br>34.6% | 0.0%<br>29.1% | 33.3%<br>29.1% | 33.3%<br>26.3% |

#### Table 7: Development of rail share of seaborne throughput and hinterland transport for selected ports 2012-2015

n/a: not available not publ.: not published

Source: BSL Transportation analysis, various port authorities, Portopia, RFC1 progress report, partly estimated

For the CT market and particularly the segment of maritime CT, the future development of seaport throughput volumes is vital. According to a recent Drewry study the medium term growth perspectives for container handling in North West Europe, the Western Mediterranean and Eastern Mediterranean (incl. Black Sea) will remain positive, as Figure 15 shows. For the Scandinavia-Baltic region, however, a negative trend is expected with a recovery not until 2018. Nevertheless, for all European regions apart from the Western Mediterranean, which could continue its growth path, container growth perspectives were negative in 2015 and 2016, due weakening of the Euro to the Dollar, less economic growth in West Asian countries, in particular China, but also owing to the political and economic situation in Russia.



Figure 15: Growth perspectives for container throughput in European seaports 2012-2019 (Index 2012 = 100)

Source: BSL Transportation analysis, based on Drewry data (2015).

With recovery expected in 2017/18, it is anticipated that European container enter the growth path again, although particularly in Eastern Europe growth perspectives are lower than predicted some years ago. In Russia, the country's economic crisis along with trade sanctions have stopped its recent dynamic trade development and lead to a sharp downturn in Russian cargo. As the sanctions continue, a further negative impact for container trade in Baltic Sea ports and hinterland transportation is likely. This also holds for Turkey which economic development is affected by the recent political events and thus is most probably damped to some extent – with implications also for seaborne trade and rail hinterland traffic.

For container hinterland CT, this leads to the conclusion that stable demand for maritime intermodal solutions may be expected particularly in North West Europe and the Western Mediterranean, whereas the situation in the Baltic Sea remains difficult. For the Eastern Mediterranean the perspective is positive with a potential for further CT volumes which is also confirmed by the results of the market survey (see chapter 4.4). Nevertheless, as stated above, the situation in Turkey may be different as the growth expectations are most probably (negatively) affected by the recent political and economic developments.

Even though growth perspectives in seaborne container throughput are lower than they used to be, maritime/hinterland transport continues to be the backbone of European CT and it is vital to further promote CT in hinterland transportation and to improve the framework needed for this task.

For this purpose, CT providers were asked again for an assessment of main operational needs of hinterland transportation (Figure 16. The results of the 2016 market survey reveal that the most relevant factors to promote combined hinterland transport principally remain the same: more electronic information exchange, reliability of services and sufficient rail capacity on hinterland corridors. Compared to 2014, the importance of having all supply chain services in one hand, on the contrary, is rated higher for promoting CT in Europe by market players.

Figure 16: Assessment of main operational needs of hinterland transportation by survey participants



Source: BSL Transportation analysis.

## 4.3. Market technology and digitalisation

To further improve and develop the European CT market, new investments in innovative handling technologies are among the frequently-discussed aspects. In the market survey, CT providers were asked to assess where they see the need for new investments and how they evaluate existing innovative technologies and systems. The results show that according to the survey participants, future investments should rather focus on new wagon types and new transport equipment than on new handling systems for CT.



#### Figure 17: Assessment of new investment needs in Combined Transport

Source: BSL Transportation analysis. Note: No consideration of the statement "no comment". Rounding differences may occur.

In order to gain further insights into the use and perception of innovative market technologies on the CT market, the most relevant innovative technologies in Combined Transport have been evaluated and assessed by the survey participants. This involves the following selection of 17 technologies:

#### Table 8: Selected innovative technologies in CT under study

| Name of technology         | Unacc.<br>CT | Acc.<br>CT | Since | Wagon-<br>related | Terminal-<br>related | Handling<br>equipment | Use in practice                   |
|----------------------------|--------------|------------|-------|-------------------|----------------------|-----------------------|-----------------------------------|
| ACTS                       | ×            |            | 1988  |                   |                      |                       | Yes, regular operation            |
| BOXmover                   | ×            |            | 2005  |                   |                      |                       | Yes, regular operation            |
| BoxTango                   | ×            |            | 2011  |                   |                      |                       | Regular operation planned         |
| CargoBeamer                | ×            |            | 1998  |                   | //////               |                       | Yes, regular operation            |
| CargoRoo                   | X            |            | 2001  |                   |                      |                       | No, only theoretical concept      |
| CargoSpeed                 | ×            |            | 2001  |                   |                      |                       | No, only prototype                |
| Flexiwaggon                |              | ×          | 2000  |                   |                      |                       | No, only prototype / singular use |
| Innovatrain Containermover | ×            |            | 2012  |                   |                      |                       | Yes, regular operation            |
| ISU-System                 | ×            |            | 2006  |                   |                      |                       | Yes, regular operation            |
| Megaswing/ Megaswing DUO   | ×            |            | 2010  |                   |                      |                       | Yes, trial operation              |
| Metrocargo                 | ×            |            | 2011  |                   |                      |                       | No, only prototype                |
| Mobiler (KV-Roller)        | ×            |            | 1995  |                   |                      |                       | Yes, regular operation            |
| Modalohr                   | ×            | ×          | 2003  |                   |                      |                       | Yes, regular operation            |
| NiKraSa                    | ×            |            | 2014  |                   |                      |                       | Yes, regular operation            |
| Rail-Tug                   | ×            |            | 2010  |                   |                      |                       | No, only theoretical concept      |
| ResoR@ail                  | ×            | х          | 2010  |                   |                      |                       | No, only theoretical concept      |
| Trimoder                   | ×            |            | 2013  |                   |                      |                       | Yes, trial operation              |

Source: BSL Transportation analysis.

For each of the technologies a brief summary with its key characteristics, advantages and disadvantages is provided in the Annex.

The survey participants were asked to assess the innovative technologies presented regarding their market potential and their use in practice. The results are somewhat sobering.

Only five technologies (ACTS, Cargo Beamer, Mobiler, Modalohr and NiKraSa) are known by more than 50% of the respondents. For most technologies survey participants see no or only small market potential which is mainly due to high unit costs. Only for two technologies (Cargobeamer and Modalohr) a high or very high market potential is attributed by more than 15% of the survey participants. For three technologies (Cargobeamer, Modalohr and Nikrasa) more than 25% of the respondents see a market potential which is at least medium or higher.

Furthermore it becomes obvious that there is little experience with the use of such technologies. A broader experience among the respondents only exists with CargoBeamer (24%), and Modalohr (25%) whereas others like Trimoder (4%) are little known. Comparing this year's survey results with the last survey shows that there is still little experience of innovative systems and technologies and that many remain unknown.

It also becomes that clear that knowledge, own experience with technologies and the assessment of their market potential are closely related.



#### Figure 18: Experience with innovative technologies in CT

Source: BSL Transportation analysis. Note: Rounding differences may occur.

Nevertheless, it is notable, that – similar to the assessment in the last report edition – the survey participants' positive general assessment of innovative technologies differs from their specific evaluation and experience. Contrary to the assessment presented above, the general evaluation of innovative market technology is very positive, being very optimistic about the effects of using these technologies. Additionally at least in the case of Cargo Beamer and Modalohr, there is a significant amount of market participants that did use the technology but stopped again.



#### Figure 19: General assessment of innovative technologies in CT

Source: BSL Transportation analysis. Note: No consideration of the statement "no comment". Rounding differences may occur.

Based on the findings above, further use of technology could be one driver and an opportunity for the future development of combined transport.

Besides innovative handling technologies, digitalisation has gained importance in combined transport and generally in the logistic sector in the past years. There is large potential that can be utilised through the progress in the field of digitalisation. Through the recording of potentially every process at any time by various sensors and RFID, it is possible to attain an immense amount of information through the internet of things. With this gathered big data, business processes and work flows are getting more transparent and offer an enormous surface for optimizations and automation. This does not only apply for mechanical devices, but especially in providing assistance to decision making in strategic matters and even to real time problems. The benefits can be very versatile and have an impact throughout the entire logistic value chain.

While the manufacturing industry, the main driver of the industrial digitalisation, focuses on creating intelligent and increasingly autonomous facilities, the logistic sector, in particular the combined transport, will still be dependent on human workforce moving the loading units for the next couple of years. Therefore the biggest impact through big data analysis will be in managing challenges. Nevertheless ongoing automation will affect the combined transport as well. Terminals in particular offer big potentials in operating efficiency through automation based on the digitalisation.

To be able to capitalize on the future trends and to stay competitive the key will be the integration of information and communication technologies (ICT) into existing business structures to enable the access to online data. A proper utilization of these opportunities will lead to multiple potential advantages.

Probably the most obvious improvement through online connectivity will be greater efficiency in administrative management processes. Fast communication via internet and the possibility for online exchanges of documents can lead to significant cost and time savings throughout the entire supply chain.

Besides the pure amount of information being accessible also the quality of the data will increase with time, leading to several potentials in transport management. Such as improved guidance in the choice of transport mode and quicker responsiveness to changing market situations. Logistic operations will gain efficiency, which will not only impact the speed and costs of shipments, but although have a positive impact on CO<sub>2</sub> emissions, e.g. through avoidance of switching to less efficient modes of transport saving time which was lost through inefficient planning.

#### Figure 20: Chances and Challenges of digitalisation in CT

#### Chances

- More efficient administrative management processes
- Improved guidance in the choice of transport modes
- Quicker responsiveness to changing market situations
- Less CO2-emissions
- Increased certainty of delivery time leads to decreasing warehousing costs
- Improved safety due to live tracking
- Automation will lead to more efficient transhipment processes

#### Challenges

- Need for interoperable operating systems
- Missing standards of e-transport documents
- Lack of clarity about benefits of digital solutions
- Data security
- Willingness of sharing sensitive data
- Adaption of digital technologies to employees

Source: BSL Transportation analysis.

With live tracking information through sensors and cameras the whole shipping process will gain in transparency. The safety on dealing with dangerous goods for example can be enhanced with accessible information on the content and condition of the freight, enabling prevention of incorrect handling and quicker reactions to accidents. Also with current information on vehicle statuses and location, the general safety of transportations can be improved. This applies i.e. at increased safety, against theft or to up-to-date maintenance data of a company's fleet.

Besides operational improvements through online data analysis regarding the coordination and tracking of transportation, the digitalisation can have a major impact on transhipment sites as well. With the availability of digital documents and freight information automated operations on transhipment sites will be possible. Furthermore live status information of the transhipment status will make transitions to following modes seamless. In the more distant future automation may even reach the extend of fully automated vehicles.

The results of the conducted survey underline that according to the market participants digital solutions will contribute more to improvements in information flows, data quality and handling times than to improvements in transport times and transport costs.





Source: BSL Transportation analysis. Note: No consideration of the statement "no comment". Rounding differences may occur.

Especially regarding the improvement and information flows there are currently numerous programs and projects. The European Commission for instance is currently developing standards for e-transport documents, which could act as catalysts in the progress of digitalisation in combined transport.

However there are several obstacles to overcome before using the full potential of the digitalisation. One of the main barriers is the need for interoperable operating systems to enable data exchange and communication along the whole supply chain. Currently common standards are mostly missing, which impedes the implementation of consistent systems. And after all coordination is a very important aspect of combined transport with its many actors.

With rising online communication and data transfer, security is gaining importance as well, which forms another major obstacle in the digital evolution. The volume and sensitivity of the transferred data is increasing and has to be protected properly. However to use the benefits of the digitalisation the willingness to share sensitive information with business partners cannot be limited by any security uncertainties. That is why data security goes hand in hand with the digitalisation.

With increasing utilization the adaption of the digital technologies by the employees becomes necessary, too. It is essential to encourage the acceptance of new technologies and train the employees using it and exploiting its full potential.

In general, the market participants assess the chances and opportunities for CT through digital solutions much higher than possible risks or challenges.



#### Figure 22: General assessment of digital solutions in CT

Source: BSL Transportation analysis. Note: No consideration of the statement "no comment". Rounding differences may occur.

Regarding the market penetration of digital approaches in CT the majority of market participants (84%) consider the implementation of digital solutions as insufficient whereas 75% already admit the usage of digital solutions (e.g. digital handling / tracking techniques, digital transport documents, etc.) on a large scale. The backlog regarding digitalisation is therefore in most cases seen at the other market participants and the CT market in general and not within the own company.

The implementation of standardised digital solution is seen as an essential facility for the future development of CT by 97% of the market participants and could be one driver to increase the CT-competitiveness and an ongoing positive development of the CT market.

# 4.4. Market development in the (Eastern) Mediterranean and Russia

This year's edition of the report on CT in Europe especially focusses on the market development in the Mediterranean, including Turkey and also Russia, paying special attention to the seaports. For this purpose, this chapter analyses 26 key ports and provides information for all considered ports and countries (see figure below).





Source: BSL Transportation analysis.

The port sample was chosen based on the following selection criteria:

- Relevance of port in terms of size (container throughput volume in TEU): only ports with an annual throughput of more than 100,000 TEU in 2015 or 2014 are considered
- Seaports which are part of one of the European Rail Freight Corridors are included<sup>9</sup>
- Seaports relevant for rail/CT are included, i.e. ports which are mainly pure transhipment hubs (rail share practically zero or no rail connection at all) are not taken into account<sup>10</sup>.

The market (and port) study presented includes a detailed analysis for each port and the eight countries, in which they are located in. For this purpose, for each of the ports and countries, a specific profile with a selection of key characteristics ("at a glance") has been created. The country profiles can be found on the following pages, whereas the port profiles are located in the annex. Owing to a lack of data availability, not all criteria may be displayed for each port and country similarly.

<sup>9.</sup> Unless smaller than defined in first criteria "Relevance of port in terms of size". Thus, the ports of Cartagena and Palermo, for example. are not taken into account. Civitavecchia (Rome), however, is included due to its relevance for RoRo traffic.

<sup>10.</sup> E.g. Gioia Tauro. Nevertheless, transhipment hubs with RFC connection (e.g. Algeciras, Piraeus/Athens) are included.



#### Figure 24: Country profile - Spain



Figure 25: Country profile - France

Source: IMF; OECD Statistics; GTAI; Eurostat

Picture 1: <u>https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png</u> Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Flag\_of\_France.svg/1280px-Flag\_of\_France.svg.png

political

ğ



#### Figure 26: Country profile - Italy

Picture 1: https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png

Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Flag\_of\_Italy.svg/1280px-Flag\_of\_Italy.svg.png

#### Figure 27: Country profile - Slovenia



Picture 1: <u>https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png</u> Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Flag\_of\_Italy.svg/1280px-Flag\_of\_Italy.svg.png \*No data for IWW available



#### Figure 28: Country profile - Greece

Source: IMF; OECD Statistics; GTAI; Eurostat

Picture 1: <u>https://pixabay.com/static/uploads/photo/2012/04/28/19/43/group-42917\_960\_720.png</u> Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Flag\_of\_Greece.svg/2000px-Flag\_of\_Greece.svg.png



#### Figure 29: Country profile - Croatia

Source: IMF; OECD Statistics; GTAI; Eurostat

Picture 1: https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Flag\_of\_Croatia.svg/2000px-Flag\_of\_Croatia.svg.png



#### Figure 30: Country profile - Turkey

Picture 1: https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png Picture 2: https://upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Flag\_of\_Turkey.svg/2000px-Flag\_of\_Turkey.svg.png from 22 June 2016 by ECB:, 1 TYR = 0,3053 EUR Source: IMF; OECD Statistics; GTAI; Eurostat

\*Estimated, converted to EUR with Currency exchange rate

#### Figure 31: Country profile - Russia



Source: IMF; OECD Statistics; GTAI; Eurostat

Picture 1: https://pixabay.com/static/uploads/photo/2012/04/26/19/43/group-42917\_960\_720.png Picture 2: https://upload.wikimedia.org/wikipedia/commons/f/f3/Flag\_of\_Russia.svg

\* Estimated, converted to EUR with Currency exchange rate from 23.06.2016 by ECB:, 1 RUB = 0,01384 EUR

Based on the presented study an overview of key country characteristics, such as the modal split of freight transport and economic development, is provided. Figure 32 shows that the modal split of freight transport (measured in tonne-km) differs significantly among the countries under study, with a rail share ranging from 1.6% up to 20,2%.





Source: BSL Transportation analysis, Eurostat; http://www.gks.ru; Briefing\_EU-Transport\_Turkey.pdf. Note: Rounding differences may occur.

For developing the rail sector and the infrastructure network of the Western and Eastern European countries the implementation of Rail Freight Corridors certainly is a key issue.

In Turkey, a major programme of infrastructure construction and railway renewal was issued in 2010 that aims to modernise and expand the rail network to 26,000 km by 2023. Currently, the quality of railroad infrastructure in Turkey according to the Global Competitiveness Index 2015-16 of the World Economic Forum, is ranked 53 of 140 countries worldwide. In addition the liberalisation of the Turkish railway market has started in order to generate a competitive and transparent market environment by opening market access.

In Russia, the competitiveness of railroad infrastructure is higher (rank 24) than its quality of road infrastructure (only rank 123 of 140 economies). Nevertheless, in particular the existing broad gauge in Russia complicates international combined transport. Apart from further investments in Russian transport infrastructure (a transport strategy 2030 was issued already back in 2008) and the removal of administrative barriers, in particular for customs clearance at borders, the connectivity of transport modes has to be improved in order to foster intermodality.

For transport market development, and thus also for rail freight and CT, GDP development is of particular interest as it reflects the general economic situation of the country and the trade environment. The following figures show the past GDP development and a forecast for 2016-2019, based on IMF data.



Figure 33: Past and future GDP Development per year (2012 – 2019) in Western Mediterranean countries and Russia

Source: BSL Transportation analysis, IMF World Economic Outlook.

Spain and Italy have recovered from the negative growth they experienced before 2014/2015 and positive economic development is expected for the upcoming years. The Russian economy was negatively affected by the Ukrainian Crisis and the related trade embargo as well as by reduced oil revenues, a devaluated rouble and a high inflation rate. Thus the Russian economy is not expected to return to the growth path before 2017. As the trade sanctions persist, recovery might even take longer than estimated.





Source: BSL Transportation analysis, IMF World Economic Outlook.

Similar to Spain and Italy, economic recovery is expected for the Eastern Mediterranean countries Croatia and Slovenia with positive growth figures from 2015 on. In Greece the expected economic situation will remain difficult at least until 2017. In view of recent political and economic developments it is questionable, if the recent boom of the Turkish economy may persist and achieve the high growth rates predicted. Due to decreasing exports and private consumer spending GDP development in Turkey was negative in the 3<sup>rd</sup> quarter 2016 for the first time since many years.

As stated above, particularly Mediterranean seaports connected to one of the Rail Freight Corridors recently could benefit from rising rail volumes. While Turkish ports experienced a rise in container throughput volumes along with the countries' economic boom in the past and in connection with large container port investment projects with several new terminals built, some of the major ports lost cargo in 2015. As the Turkish lira is currently under pressure and there is political uncertainty, this will most probably have a negative effect on future seaport and hinterland traffic – and thus also on CT. Russian ports also witnessed a decline in container handling volumes recently due to the difficult economic situation and the decline in Russian trade and international transport volumes.

Todays market expectations regarding the development of CT towards Eastern Europe and Turley are considerably more restrained than two years ago.

Figure 35: Assessment of market potential for combined transport in Eastern Europe and Turkey 2014 vs. 2016



Source: BSL Transportation analysis.

# 5. Combined transport market assessment and outlook

The expected average growth rate for 2014 and 2015 was approx. +4% p.a.. These forecasts were based on the statements of CT providers who had participated in the 2014 survey. Based on TEU the prognoses was too optimistic for the entire European CT-market, while the development of tonne-volume widely meets the expectations (see Table 9).

|--|

| Market development       | 2015 t    | o 2013      |
|--------------------------|-----------|-------------|
|                          | TEU-based | Tonne-based |
| Forecast of stakeholders | + 8.19    | % p.a.      |
| Actual figures           | + 1.1%    | + 8.0%      |

Source: BSL Transportation analysis.

Anyhow, the development differs between CT operators and countries. The outlook for the current and the upcoming years, given by the market participants in 2016 is still very optimistic (see Figure 36). In order to determine the average growth expectations for the market, the company-specific expectations were weighted with the individual CT volumes.

#### Figure 36: Average expected volume growth of the total combined transport market for the next years



Source: BSL Transportation analysis.

Companies' individual forecasts of expected growth rates are completely different. They range from -20% to more than 100% p.a.

The overall DIOMIS forecast for the years 2018, which focuses on unaccompanied combined transport based on gross tonnes, seems to be a bit too optimistic. Based on the expected growth rates of the survey participants the volume of European CT transport will be about 245 m tonnes in 2018 (see Figure 37).

<sup>11.</sup> The 2013 volumes relate to the total CT market (incl. accompanied CT with a market share below 5%).



Figure 37: Past development (2005 to 2015) and forecast of total unaccompanied CT volumes [in million tonnes]

Source: DIOMIS, BSL Transportation analysis.

Regarding the geographical focus of future CT growth the survey participants expect further market potential particularly on the rail corridor towards Eastern Mediterranean Seaports and Eastern Europe. For the Western Mediterranean seaports slightly lower growth perspectives are anticipated, which may probably result from a certain market saturation perceived in this geographical region. Although the future potential for CT attributed to Turkey and Russia are still predominantly positive, the assessment of survey participants is more controversial than for the other regions due to the current political situation.



#### Figure 38: Expected further geographical market potential for combined transport

Source: BSL Transportation analysis.

In spite of several challenges for the future CT-market like:

- use of trucks above 40 tonnes in weight and 18.75 metres in length,
- general cost pressure,
- rail network as well as terminal capacity restrictions, and
- political and/ or economic uncertainty

market stakeholders' outlook is quite positive – for both development towards Eastern Europe/ Eastern Mediterranean seaports and the overall Combined Transport in Europe.

## 6. Annexes

| 5               | Port / Country         |              | 2005      | 2006      | 2007       | 2008       | 2009      | 2010       | 2011       | 2012         | 2013       | 2014       | 2015       |
|-----------------|------------------------|--------------|-----------|-----------|------------|------------|-----------|------------|------------|--------------|------------|------------|------------|
| 1 1             | Aarbus                 | DK           | 803.000   | 856.000   | 921.000    | 841.000    | 683.000   | 446 328    | 431 350    | 404 287      | 405 837    | 424.050    | 444 821    |
| r t             | Admus                  | -101         | 000.000   | 000.000   | 321.000    | 041.000    | 000.000   | 440.520    | 431.333    | 404.207      | 403.007    | 424.000    | 444.021    |
| 1_2             | Algeciras              | ES           | 3.179.300 | 3.256.614 | 3.420.533  | 3.327.616  | 3.042.759 | 2.806.884  | 3.602.631  | 4.070.791    | 4.342.998  | 4.556.465  | 4.515.768  |
| 3               | Alicante               | ES           | 159.237   | 172.729   | 179.259    | 150.827    | 132.059   | 147.308    | 154.257    | 158.274      | 148.135    | 139.273    |            |
| 4               | Ambarli                | TR           | 1.186.051 | 1.446.269 | 1.940.000  | 2.262.000  | 1.836.000 | 2.540.000  | 2.686.000  | 3.097.000    | 3.378.000  | 3.380.000  | i          |
| 5               | Amsterdam              | NL           | 65.844    | 305.995   | 386.236    | 436.074    | 203.084   | 60.043     | 48.515     | 68.933       | 65.088     | 57.399     | 51.634     |
| 6               | Ancona                 | Π            | 64.209    | 76.458    | 87.193     | 119.104    | 105.503   | 110.395    | 120.674    | 142.213      | 152.394    | 164.882    | 178.476    |
| 7               | Antwerp                | NL           | 6.482.029 | 7.018.799 | 8.176.614  | 8.663.736  | 7.309.639 | 8.468.475  | 8.664.234  | 8.635.169    | 8.578.269  | 8.977.738  | 9.653.511  |
| г÷              | Palaaraa               |              | 155 592   |           | 104 277    | 176 196    | 127.025   | 79 425     | 67 210     | 57 975       | 61 550     | 60 772     | 90.620     |
|                 |                        | 1=0          | 155.562   |           | 194.277    | 170.100    | 127.935   | 70.425     | 07.210     | 57.875       | 01.559     | 09.772     | 09.030     |
| 9               | Barcelona              | <u>_ES</u>   | 2.071.480 | 2.318.239 | 2.610.099  | 2.570.000  | 1.800.213 | 1.945.733  | 2.034.693  | 1.758.647    | 1.720.383  | 1.893.836  | 1.965.240  |
| 10              | Bilbao                 | ES           | 503.817   | 523.114   | 554.557    | 557.345    | 443.464   | 531.457    | 572.784    | 610.132      | 606.827    | 630.888    | 627.302    |
| 11              | Bordeaux               | FR           | 50.763    | 50.112    | 65.749     | 55.397     | 80.018    | 54.600     | 60.511     | 63.285       | 56.383     | 56.065     | 62.718     |
| 12              | Bremerhaven            | DE           | 3.743.969 | 4.444.389 | 4.892.087  | 5.448.189  | 4.578.642 | 4.888.655  | 5.915.487  | 6.115.211    | 5.830.711  | 5.795.624  | 5.546.657  |
| 113             | Cádiz                  | ES           | 139.534   | 157,734   | 145.229    | 126.408    | 106.399   | 109.187    | 92.217     | 96.215       | 92.332     | 85,462     | 67.311     |
| F14             | Cagliari               |              | 620.040   | 697.657   | 547 226    | 207 527    | 726.094   | 620.340    | 612 022    | 627 600      | 702 142    | 717.016    | 747 602    |
| 12              | Oaglian                | - 12         | 000.040   | 007.007   | 47.000     | 40.755     | 730.304   | 023.340    | 70.000     | 027.003      | 102.145    | 00.704     | 00.050     |
| 10              | Canagena               | ES           | 38.089    | 39.594    | 47.036     | 40.755     | 58.680    | 64.489     | 72.320     | 66.438       | 80.955     | 88.784     | 92.052     |
| 16              | Castellón              | ES           | 43.773    | 71.660    | 101.929    | 88.208     | 67.075    | 103.956    | 130.963    | 160.934      | 193.969    | 206.551    | 214.663    |
| 17              | Civitavecchia          | п            | []        | 33.538    | 31.143     | 25.213     | 28.338    | 41.536     | 38.165     | 50.965       | 54.019     | 64.386     | 66.731     |
| 18              | Constantza             | RO           | 768.099   | 1.037.066 | 1.411.387  | 1.380.935  | 595.303   | 556.694    | 662.796    | 684.059      | 661.124    | 668.349    | 689.012    |
| 19              | Dublin                 | IE           | 590.367   | 680,680   | 743.937    | 676.870    | 548.123   | 554.054    | 525.741    | 527.984      | 517.086    | 565,703    | 614,226    |
| 20              | Dunkergue              | IFR          | 204 562   | 204 835   | 197 811    | 214 487    | 212 424   | 200.858    | 273.055    | 260 278      | 292 000    | 312 000    | 316 000    |
| 124             | Feliystowe             |              | 2 760 000 | 3 080 000 | 3 300 000  | 3 132 000  | 3 020 042 | 3 / 15 124 | 3 400 000  | 3 700 000    | 3 700 000  | 4 072 102  | 4 042 000  |
| 121             | _r elixslowe           |              | 2.700.000 | 3.000.000 | 3.300.000  | 3.132.000  | 3.020.942 | 3.415.134  | 3.400.000  | 3.700.000    | 3.700.000  | 4.072.192  | 4.042.989  |
| L <sup>22</sup> | Frederica              | שיי          | 12.370    | 19.523    | 25.174     | 33.542     | 36.560    | 26.181     | 63.195     | /0.774       | 67.869     |            | /7.350     |
| 23              | Gdansk                 | PL           | 70.014    | 78.364    | 96.873     | 185.661    | 240.623   | 511.876    | 685.643    | 928.905      | 1.177.623  | 1.212.054  | 1.091.202  |
| 24              | Gdynia                 | PL           | 400.165   | 461.170   | 614.373    | 610.767    | 378.340   | 485.255    | 616.441    | 676.349      | 729.607    | 849.123    | 684.796    |
| 25              | Genova                 | п            | 1.624.964 | 1.657.113 | 1.855.026  | 1.766.605  | 1.533.627 | 1.758.858  | 1.847.102  | 2.064.806    | 1.988.013  | 2.172.944  | 2.242.902  |
| 26              | Ghent                  | BF           | 3 213     | 2 743     | 2 570      | 61 380     | 63 657    | 83 065     | 80 093     | 88 159       | 70 228     | 36 800     | 20 195     |
| 127             | Giión                  | - <u>F</u> e | 5.049     | 7 740     | 12 940     | 26 005     | 27 /65    | 11 0/2     | 35.000     | 10 607       | 62 546     | 52 547     | 61 000     |
| r               | Cipin Tours            | <u></u>      | 3 202 252 | 1.140     | 3.049      | 20.095     | 21.405    | +1.943     | 000.000    | 40.00/       | 2 007 205  | 00.047     | 01.000     |
| L <sup>28</sup> | Giola Tauro            | - '-''       | 3.208.859 | 2.938.176 | 3.445.337  | 3.467.824  | 2.857.440 | 2.851.261  | 2.338.000  | 2.721.104    | 3.087.395  | 2.969.802  | 2.546.805  |
| 29              | Göteborg               | SE           | 787.705   | 820.394   | 840.550    | 863.000    | 817.615   | 879.611    | 886.782    | 899.628      | 858.497    | 836.631    | 820.000    |
| 30              | Hamburg                | DE           | 8.087.545 | 8.861.804 | 9.889.792  | 9.737.110  | 7.007.704 | 7.895.736  | 9.014.165  | 8.863.896    | 9.257.358  | 9.728.666  | 8.821.481  |
| 31              | Haydarpasa             | TR           | 340.629   | 400.067   | 396.637    | 360.000    | 187.365   | 176.468    | 210.000    |              |            | 127.791    | 121.641    |
| 32              | Helsingborg            | SE           | 169 000   | 200,000   | 226 733    |            | 260,000   |            | 350,000    |              |            | 204 476    | 197 412    |
| 122             | Heleinki               |              | 460.000   | 417.000   | 421.000    | 428.000    | 257.000   | 202.000    | 303.000    | 405.000      | 406 246    | 400 512    | 420 121    |
| - 33            |                        |              | 460.000   | 417.000   | 431.000    | 428.000    | 357.000   | 392.000    | 393.000    | 405.000      | 400.240    | 400.513    | 430.131    |
| _34             | Hull                   | UK           | 251.684   | 267.166   | 303.153    | 262.000    | 181.957   | 202.119    | 233.009    | 239.641      | 254.605    | 226.869    | 238.883    |
| 35              | Izmir                  | TR           | 784.377   | 847.926   | 892.217    | 895.000    | 826.645   | 726.675    | 672.486    | 705.097      | 697.020    | 680.975    | 656.410    |
| 36              | Kaliningrad            | RU           | )i        |           | <b>_</b>   |            | ·         |            |            | <sup>I</sup> |            | 325.189    | 179.378    |
| 37              | Klaipeda               | LT           | 214.307   | 231.548   | 321.432    | 373.263    | 247.977   | 295.221    | 382.185    | 381.278      | 402.211    | 450.428    | 392.674    |
| 38              | København/Malmö        | ISE          | 155.000   | 175.000   | 192.000    | 194.000    | 151.000   | 153.000    | 153.000    | 148.000      | 141.000    | 149.000    | 164.000    |
| 20              | Kopor                  | - <u></u> -  | 170 745   | 219.070   | 205.649    | 252 990    | 242 165   | 476 721    | 590 214    | 570 744      | 600 441    | 674.022    | 700 726    |
| - 39            | Kopei                  | - 101        | 1/9./45   | 210.970   | 305.040    | 333.880    | 343.105   | 470.731    | 509.514    | 570.744      | 000.441    | 074.033    | 790.730    |
| 40              | Kotka/Hamina           |              | 542.027   | 628.857   | 766.292    | 627.149    | 345.939   | 512.676    | 609.823    | 631.042      | 626.924    | 574.982    | 555.377    |
| 41              | Las Palmas             | ES           | 1.303.356 | 1.438.409 | 1.449.928  | 1.429.457  | 1.073.033 | 1.187.109  | 1.349.968  | 1.253.216    | 1.055.752  | 1.009.284  |            |
| 42              | La Spezia              | ١T           | 1.024.455 | 1.136.664 | 1.187.040  | 1.246.139  | 1.046.063 | 1.285.155  | 1.307.274  | 1.247.218    | 1.300.432  | 1.303.000  | 1.330.000  |
| 43              | Le Havre               | FR           | 2.118.509 | 2.137.828 | 2.638.000  | 2.488.654  | 2.240.714 | 2.358.077  | 2.215.262  | 2.303.750    | 2.485.660  | 2.550.199  | 2.559.410  |
| 44              | Leixões                | PT           | 352.002   | 378.387   | 433.437    | 450.026    | 454.503   | 483.319    | 514.088    | 632.673      | 626,193    | 666.689    | 624.008    |
| 145             | Lemesos                |              | 320 360   | 360.010   | 376 662    | 413 756    | 356 681   | 348 667    | 344 002    | 307 396      | 277 215    | 307 660    |            |
| <b>F</b> .      | Lemesos                |              | 520.505   | 540.504   | 570.002    | 413.730    | 500.001   | 540.007    | 544.552    | 307.330      | 211.213    | 500.400    |            |
| 46              | LISDOA                 | 1            | 513.061   | 512.501   | 554.//4    | 556.062    | 500.769   | 512.789    | 541.906    | 485.761      | 549.302    | 502.186    |            |
| 47              | Liverpool              | UK           | 613.111   | 613.442   | 675.678    | 672.000    | 588.000   | 662.000    | 664.000    | 635.000      | 623.000    | 665.795    | 680.451    |
| 48              | Livorno                | П            | 658.506   | 657.592   | 745.557    | 778.864    | 592.050   | 628.489    | 637.798    | 549.047      | 559.180    | 577.471    | 780.874    |
| 49              | London/Tilbury         | UK           | 735.170   | 742.679   | 843.808    | 1.166.814  | 845.720   | 496.409    | 890.755    | 920.137      | 929.031    | _          |            |
| 50              | Lübeck                 | DE           | 170.000   | 234.000   | 205.338    |            | 167.459   | 157.176    | 140.894    | 141.356      | 132.739    | 147.248    | 143.788    |
| 151             | Malaga                 | ES           | 247.548   | 464.838   | 542,405    | 428.623    | 289.871   | 298.401    | 476.997    | 336.265      | 296.350    | 87.989     | 43.281     |
| F_57            | Marport                |              |           | 720 602   | 798.050    | 1 252 020  | 1 159 249 | 1 663 551  | 1 548 490  | 1 583 897    | 1 705 962  | 1 757 001  | 1 585 450  |
| L <sup>32</sup> | Manport                |              |           | 120.003   | 1 90.009   | 1.202.909  | 1.109.249 | 0.000.001  | 1.040.400  | 1.000.007    | 0.700.902  | 1.101.901  | 1.000.400  |
| 53              | Marsaxlokk             | MT           | 1.321.000 | 1.485.000 | 1.900.000  | 2.330.000  | 2.260.000 | 2.370.729  | 2.360.000  | 2.540.000    | 2.750.000  | 2.869.131  | 3.064.005  |
| 54              | Marseille-Fos          | FR           | 905.687   | 941.398   | 1.002.879  | 851.000    | 878.000   | 953.435    | 944.047    | 1.061.000    | 1.099.000  | 1.179.910  | 1.223.071  |
| 55              | Mersin                 | TR           | 596.289   | 643.749   | 782.028    | 844.632    | 843.917   | 1.030.391  | 1.113.850  | 1.260.000    | 1.380.000  | 1.490.000  | 1.470.000  |
| 56              | Nantes St-Nazaire      | FR           | 132.054   | 132.913   | 147.127    | 149.281    | 145.662   | 166.266    | 178.185    | 184.838      | 183.029    | 177.811    | 184.799    |
| 1.57            | Napoli                 | п            | 373 706   | 444 982   | 460 812    | 481 521    | 515 868   | 532 432    | 526 768    | 546 818      | 477 020    | 431 682    | 438 280    |
| Г <u>,</u>      | Novorossivek           |              | 161 900   | 226 570   | 261 000    | 381 200    | 224 900   | 171 100    | 500 000    | 0 70.0 70    |            | 630 700    | 176 000    |
| 100             | Odaaaa                 | - RU         | 101.000   | 220.370   | 201.000    | 501.300    | 234.000   | 471.400    | 450.000    | 400.000      | 50 1 000   | 444.505    | 470.000    |
| - 59            | ouessa                 |              | 288.349   | 396.433   | 523.610    | 5/2.142    | 205.461   | 351.600    | 453.700    | 403.090      | 504.083    | 414.535    | 312.297    |
| 60              | Uslo                   | NO           | 170.506   | 172.065   | 196.252    | 190.308    | 178.944   | 201.892    | 208.799    | 202.790      | 202.497    | 212.579    | 195.460    |
| 61              | Piräus                 | GR           | 1.394.512 | 1.403.408 | 1.373.138  | 433.582    | 664.895   | 680.000    | 1.118.000  | 2.108.000    | 3.163.000  | 3.600.000  | 3.287.000  |
| 62              | Rauma                  | FI           | 120.234   | 168.952   | 174.531    | 172.155    | 143.269   | 164.904    | 223.005    | 238.953      | 258.810    | 277.935    | 262.567    |
| 63              | Ravenna                | п            | 168.588   | 162.052   | 206.786    | 214.324    | 185.022   | 183.041    | 215.336    | 208.152      | 226.879    | 222.548    | 244.813    |
| 64              | Riga                   | ii v         | 168 079   | 176 826   | 211 840    | 207 122    | 182 080   | 254 175    | 302 072    | 362 207      | 381 000    | 387 602    | 355 2/1    |
| 165             |                        |              | 76 250    | 04 200    | 145.040    | 169 764    | 120 740   | 127 0/0    | 150 677    | 120 600      | 131 210    | 102.004    | 161 000    |
| 100             |                        | <u></u>      | 10.208    | 94.390    | 140.040    | 100./01    | 07/0000   | 137.048    | 100.077    | 129.000      | 131.310    | 192.004    | 101.003    |
| 66              | Rotterdam              |              | 9.288.399 | 9.653.232 | 10.790.604 | 10.783.825 | 9.743.290 | 11.145.804 | 11.8/6.921 | 11.865.916   | 11.621.249 | 12.297.570 | 12.234.535 |
| 67              | Rouen                  | FR           | 161.387   | 165.179   | 158.572    | 142.036    | 121.940   | 129.585    | 130.598    | 127.527      | 102.122    | 96.985     | 111.731    |
| 68              | Salerno                | чπ           | 418.205   | 359.707   | 385.306    | 330.373    | 269.300   | 234.809    | 235.209    | 208.591      | 263.405    | 320.044    | 359.328    |
| 69              | Santa Cruz de Tenerife | ES           | 446.314   |           | 475.635    | 397.788    | 346.254   | 357.472    | 348.965    | 322.100      | 309.611    | 325.708    | 345.457    |
| 70              | Savona                 | п            | 219 876   | 227 107   | 242 720    | 252 837    | 196 317   | 196 434    | 170 427    | 75 282       | 77 850     | 90.823     | 98 033     |
| 110             | 0.1010                 |              | 2.0.010   | LLI.101   | L7L.1LU    | 202.001    | 100.017   | 100.704    |            | 1 0.202      | 11.000     | 50.023     | 00.000     |

#### Table A1: Seaborne container throughput at major European container seaports 2005-2015 [in TEU]

| Port / Country    |     | 2005      | 2006      | 2007       | 2008      | 2009      | 2010      | 2011       | 2012      | 2013      | 2014      | 2015      |
|-------------------|-----|-----------|-----------|------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| 71 Setúbal        | РТ  | 12.932    | 15.744    | 12.425     | 19.952    | 25.506    | 47.551    | 77.127     | 49.350    | 70.564    | 103.563   | 121.179   |
| 72 Sevilla        | ES  | 115.669   | 122.611   | 135.040    | 130.452   | 129.736   | 152.612   | 164.642    | 156.193   | 140.404   | 161.595   | 161.671   |
| 73 Sines          | РТ  | 50.994    | 121.957   | 150.038    | 233.118   | 253.495   | 382.089   | 447.495    | 553.063   | 931.037   | 1.227.694 | 1.332.200 |
| 74   Southampton  | Ŋ   | 1.375.000 | 1.500.306 | 1.900.000  | 1.710.000 | 1.355.000 | 1.540.000 | 1.563.040  | 1.475.510 | 1.488.253 | 1.895.303 | 1.954.060 |
| 75 St. Petersburg | RU  | 722.427   | 888.827   | 959.032    | 1.072.346 | 938.931   | 1.159.989 | 2.365.174  | 2.524.680 | 2.514.440 | 2.374.876 | 1.715.139 |
| 76 I Szczecin/Sw. | IPL | 36.453    | 42.424    | 56.321     | 62.9131   | 52.8091   | 56.503    | 55.098     | 52.163    |           | 78.439    | 87.784    |
| 77 Tallinn        | Ш   | 127.585   | 152.399   | 180.911    | 180.927   | 131.059   | 151.969   | 197.717    | 227.809   | 253.627   | 260.293   | 208.784   |
| 78 Tanger         | MA  |           |           | 600.000    | 920.708   | 1.222.000 | 2.058.430 | 2.093.408  | 1.826.313 | 2.558.423 | 3.077.750 | 2.964.324 |
| 79 Taranto        | E   | 716.856   | 892.303   | 755.934    | 786.655   | 741.428   | 581.936   | 604.404    | 263.461   | 197.317   | 148.519   | 716.856   |
| 80 Tarragona      | ES  | 8.980     | 12.203    | 47.136     | 47.419    | 221.203   | 255.407   | 225.747    | 188.851   | 147.246   | 148.636   | 89.852    |
| 81 Teesport       | ¥   |           |           |            | 368.829   | 344.289   | 394.062   | 405.806    | 378.313   | 374.892   | 420.000   |           |
| 82 I Thamesport   | Ŋ   |           |           |            | 773.000   | 422.884   | 439.766   | 361.255    | 350.000   |           |           |           |
| 83 Thessaloniki   | В   | 365.925   | 343.727   | 447.211    | 238.940   | 270.181   | 273.282   | 295.870    | 317.900   | 322.310   | 349.513   | 351.407   |
| 84 I Trieste      | Ш   | 198.319   | 220.310   | 265.863    | 335.943   | 276.957   | 281.643   | 393.195    | 408.023   | 458.597   | 506.019   | 501.276   |
| 85 Ust-Luga       | RU  |           | -         |            |           |           |           | _          |           |           | 103.521   | 89.820    |
| 86 I Valencia     | ES  | 2.409.821 | 2.612.049 | 3.042.6651 | 3.602.112 | 3.653.890 | 4.206.937 | 4.327.371  | 4.469.754 | 4.327.838 | 4.441.949 | 4.615.196 |
| 87 Varna          | BG  | 84.000    | 94.046    | 99.713     | 155.362   | 112.611   | 118.702   | 122.844    | 128.390   | 131.460   | 132.668   | 139.203   |
| 88 Venezia        | F   | 289.860   | 316.641   | 329.512    | 379.072   | 369.474   | 393.913   | 458.363    | 429.893   | 446.591   | 456.068   | 560.301   |
| 89 Vigo           | РТ  | 205.497   | 226.927   | 244.065    | 247.873   | 193.921   | 213.127   | 212.120    | 198.517   | 208.555   | 204.163   | 223.699   |
| 90 Wilhelmshaven  | IDE | '         |           | -          | '         | -         | '         |            | 26.045    | 76.265    | 67.076    | 426.751   |
| 91 Zeebrugge      | BE  | 1.407.933 | 1.653.493 | 2.020.723  | 2.209.715 | 2.328.198 | 2.499.756 | 2.206.6811 | 1.953.170 | 2.026.270 | 2.046.586 | 1.568.938 |
|                   |     |           |           |            |           |           |           |            |           |           |           |           |

Table A1: Seaborne container throughput at major European container seaports 2005-2015 [in TEU]

Source: BSL Transportation analysis, various port authorities, ESPO, Drewry, Containerisation International, Eurostat.

| Seaport / Country |    |            | Seaborne<br>throughp | container<br>out (TEU) |            | Container carried by rail (TEU) |           |           |              |  |
|-------------------|----|------------|----------------------|------------------------|------------|---------------------------------|-----------|-----------|--------------|--|
|                   |    | 2012       | 2013                 | 2014                   | 2015       | 2012                            | 2013      | 2014      | 2015         |  |
| Algeciras         | ES | 4,070,791  | 4,342,998            | 4,556,465              | 4,515,768  | 6,661                           | 18,309    |           |              |  |
| Alicante          | ES | 158,274    | 148,135              | 139,273                |            | 0                               | 0         |           |              |  |
| Ancona            | IT | 142,213    | 152,394              | 164,882                | 178,476    | 7,111                           | 7,620     | 350       | 0            |  |
| Antwerp           | NL | 8,635,169  | 8,578,269            | 8,977,738              | 9,653,511  | 617,000                         | 416,000   | 383,349   | 418,962      |  |
| Barcelona         | ES | 1,758,647  | 1,720,383            | 1,893,836              | 1,965,240  | 148,926                         | 154,522   | 189,553   | 213,229      |  |
| Bilbao            | ES | 610,132    | 606,827              | 630,888                | 627,302    | 85,901                          | 103,161   |           |              |  |
| Bordeaux          | FR | 63,285     | 56,383               | 56,065                 | 62,718     |                                 |           | 0         | 0            |  |
| Bremerhaven       | DE | 6,115,211  | 5,830,711            | 5,795,624              | 5,546,657  | 1,042,000                       | 1,049,000 | 1,101,000 | 1,078,000    |  |
| Cádiz             | ES | 96,215     | 92,332               | 85,462                 | 67,311     | 0                               | 0         |           |              |  |
| Constantza        | RO | 684,059    | 661,124              | 668,349                | 689,012    | n/a                             | n/a       | n/a       | n/a          |  |
| Felixstowe        | UK | 3,700,000  | 3,700,000            | 4,072,192              | 4,042,989  |                                 | 830,000   | 890,000   | 910,000      |  |
| Gdansk            | PL | 928,905    | 1,177,623            | 1,212,054              | 1,091,202  | 116,813                         | 123,101   | 128,390   | 371,213      |  |
| Gdynia            | PL | 676,349    | 729,607              | 849,123                | 684,796    |                                 | 162,000   |           |              |  |
| Genova            | IT | 2,064,806  | 1,988,013            | 2,172,944              | 2,242,902  | 284,743                         | 296,035   | 304,955   | 305,350      |  |
| Ghent             | BE | 88,159     | 70,228               | 36,800                 | 20,195     | 7,053                           |           |           |              |  |
| Gijón             | ES | 48,607     | 62,546               | 53,547                 | 61,006     |                                 |           | 0         | 0            |  |
| Göteborg          | SE | 899,628    | 858,497              | 836,631                | 820,000    | 410,949                         | 393,225   |           |              |  |
| Hamburg           | DE | 8,863,896  | 9,257,358            | 9,728,666              | 8,821,481  | 1,975,000                       | 2,110,000 | 2,249,865 | 2,300,289    |  |
| Helsingborg       | SE |            |                      | 204,476                | 197,412    |                                 |           | 26,517    | 21,456       |  |
| Helsinki          | FI | 405,000    | 406,246              | 400,513                | 430,131    | 8,400                           | 7,000     | 5,800     | 5,000        |  |
| lzmir             | TR | 705,097    | 697,020              | 680,975                | 656,410    | 104,108                         | 105,203   | 83,298    | 86,290       |  |
| Klaipeda          | LT | 381,278    | 402,211              | 450,428                | 392,674    |                                 |           | 57,809    | 42,068       |  |
| Koper             | SI | 570,744    | 600,441              | 674,033                | 790,736    |                                 | 360,265   | 367,011   | 430,556      |  |
| La Spezia         | IT | 1,247,218  | 1,300,432            | 1,303,000              | 1,330,000  | 277,000                         | 295,000   | 322,569   | 310,809      |  |
| Le Havre          | FR | 2,303,750  | 2,485,660            | 2,550,199              | 2,559,410  | 100,049                         | 82,569    | 87,734    | 88,265       |  |
| Leixões           | PT | 632,673    | 626,193              | 666,689                | 624,008    |                                 |           | 10,891    | 5,426        |  |
| Livorno           | IT | 549,047    | 559,180              | 577,471                | 780,874    | 66,885                          | 69,083    | 66,497    | 75,972       |  |
| London/Tilbury    | UK | 920,137    | 929,031              |                        |            |                                 |           | no da     | ta published |  |
| Lübeck            | DE | 141,356    | 132,739              | 147,248                | 143,788    |                                 |           | 55,130    | 62,807       |  |
| Marsaxlokk        | MT | 2,540,000  | 2,750,000            | 2,869,131              | 3,064,005  |                                 |           | 0         | 0            |  |
| Nantes St-Naza    | FR | 184,838    | 183,029              | 177,811                | 184,799    |                                 |           | 0         | 0            |  |
| Odessa            | UA | 463,090    | 504,083              | 414,535                | 372,297    | 80,536                          | 79,172    | 67,360    | 66,158       |  |
| Oslo              | NO | 202,790    | 202,497              | 212,579                | 195,460    |                                 |           |           |              |  |
| Ravenna           | IT | 208,152    | 226,879              | 222,548                | 244,813    | 23,375                          | 26,248    |           |              |  |
| Riga              | LV | 362,297    | 381,099              | 387,603                | 355,241    | n/a                             | 95,275    | n/a       | 63,950       |  |
| Rotterdam         | NL | 11,865,916 | 11,621,249           | 12,297,570             | 12,234,535 | 794,000                         | 790,000   | 869,493   | 882,791      |  |
| Sines             | PT | 553,063    | 931,037              | 1,227,694              | 1,332,200  | 134,227                         | 137,340   | 189,683   | 208,950      |  |
| Southampton       | UK | 1,475,510  | 1,488,253            | 1,895,303              | 1,954,060  |                                 |           | no da     | ta published |  |
| Tallinn           | EE | 227,809    | 253,627              | 260,293                | 208,784    | 48,988                          | 62,812    | 70,796    | 40,230       |  |
| Tanger            | MA | 1,826,313  | 2,558,423            | 3,077,750              | 2,964,324  | 3,653                           | 5,117     |           |              |  |
| Trieste           | IT | 408,023    | 458,597              | 506,019                | 501,276    |                                 |           | 92,104    | 111,415      |  |
| Varna             | BG | 128,390    | 131,460              | 132,668                | 139,203    |                                 |           | 0         | 0            |  |
| Venezia           | IT | 429,893    | 446,591              | 456,068                | 560,301    | 3,150                           | 3,400     |           |              |  |
| Vigo              | PT | 198,517    | 208,555              | 204,163                | 223,699    | 0                               | 0         |           |              |  |
| Wilhelmshaven     | DE | 26,045     | 76,265               | 67,076                 | 426,751    |                                 |           | 6,713     | 42,602       |  |
| Zeebrugge         | BE | 1,953,170  | 2,026,270            | 2,046,586              | 1,568,938  | 535,855                         | 490,363   | 472,761   | 387,528      |  |
| n/a: not availab  | le |            |                      |                        |            |                                 |           |           |              |  |

Table A2: Seaborne container throughput and rail transport volume of selected European ports 2012-2015 (in TEU)

Source: BSL Transportation analysis, various port authorities, Portopia, RFC1 progress report, partly estimated.

#### Table A3: CT-Technologies

| Technology field Use in practice<br>Wagon<br>Terminal<br>Handling<br>Handling | x yes. regular operation<br>(system particularity in<br>use and proven in the<br>waster (recycling<br>industry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x yes, regular operation                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x Regular operation                                                                                                                                                                                                                                                                                                                                                                                                            | x yes, regular operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no, only theoretical                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disadvantages<br>(selection)                                                  | Railway carriage with<br>rotating frame required<br>and trucks with tooks with tooks<br>and tooks with took with<br>below frame and the took<br>is took and the took<br>is took and the took<br>egg transmitter and<br>egg transmitter and<br>mainternance effort, if<br>necess but possibly high<br>mainternance effort, if<br>necess but possibly high<br>mainternance effort, if<br>necessary freed rotating<br>frames on wagons<br>required (new roadable<br>roadable<br>roadable<br>meeded.                                                                                                | Hydraulic possibly<br>susceptible high-<br>maintenance, arising<br>setup costs for trucks                                                                                                                                                                                                                                                                                                                                                                                  | trucks need to be<br>upgraded, place spaces<br>nor containers<br>up to 40 tonnes                                                                                                                                                                                                                                                                                                                                               | only for transcompanied<br>occurbined transcompanied<br>weight of fregit wagons<br>(heaved) that man under<br>procket wagons<br>procket wagons and higher<br>the wagons and higher the wagons and higher<br>the wagons and |                                                                                                                                                                                                                                                    |
| Advantages (selection)                                                        | No stationary loading aids (stacker, crane)<br>required, easy to use system that allows the<br>required, area to othe of containers between<br>truck and train. Container in serial production,<br>little space needed (only 10 qm), paved area is<br>sufficient, handling by one person possible                                                                                                                                                                                                                                                                                               | No terminal infrastructure required (e.g. no<br>cranes, ramps etc.), rapd turn-over, leasing is<br>possible, mobile use, no cometing rail tracks<br>are required, one-person-use, low ownight,<br>transport and turn-over with one vehicle,<br>maximum in flexibility, low downitmes,<br>independent, at groudn level and flexible turn-<br>lower                                                                                                                          | Time and cost savings:<br>the decoupling - chassis and truck can be<br>used for further transports:<br>Compatible with SO containers and swap<br>bodies:<br>Total weight of container and lift truck up to 40<br>tons<br>Adaptable to different height of chassis:<br>Adaptable to different height of chassis:<br>Adaptable to different height of chassis:<br>Adaptable to different height of containers and swap<br>bodies | ver crame for locating required, fast turn-over,<br>loading-process with orditact-vire possible (in<br>transformation on diseel traction necessary).<br>dideal for changing tracks due to a reduced turn<br>over time, to and tractor unit domort have be<br>there simultaneously at the terminals.<br>(turn-over with cranes/ Reach stacker also<br>possible), area efficiency of the terminal<br>technic (13m width + traffic lane), no hydraulic<br>system or electricity, normal bogies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |
| Year                                                                          | 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2011                                                                                                                                                                                                                                                                                                                                                                                                                           | -1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2001                                                                                                                                                                                                                                               |
| ເຊັ່ງ<br>ອີກອາເອຊ                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                    |
| d-moo osnl<br>G bains                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |
| Key characteristics of technology                                             | The roll-off container transport system ACTS allows fast handling<br>between rail and road transport. The roll-off container is a loadung<br>unit on wheek with standaired subfloor. For road transport a truck is<br>needed, which enables handling by means of a chain of hook<br>device. Through a swiveling frame with guide rails on the wagon, a<br>simple bading process is possible. This will be swing-out by the<br>truck driver and the ACTS Container can how be pushed, by the<br>truck on the rotating frame on the rail wagon. Alterwards the rotating<br>frame is swiveled back | The BOXmover side loader is a loading device for trucks (or rail<br>wagon) which works without forklift or ram system. The loading<br>device and directly be mounted on thatler chassis (or rail wagon)<br>and is possible to lurn-over any nominated loading unit (as well tuck)<br>lines). Through the agle hydraulic system a horizontal unloading of<br>cargo at different high levels is possible - this makes the BOXmover<br>uniwue compared to other side-loaders. | Park<br>- Truck drives onto BoxStation<br>- Truck drives onto BoxStation<br>- Chassis is lowered<br>- Truck drives out of the BoxStation, container is stored<br>Truck drives out of the BoxStation<br>- Truck drives out of the BoxStation and is operational<br>- Truck drives out of the BoxStation and is operational                                                                                                      | Horizontal leading system from CargoBearne AG for combined rail<br>transport, markes the fully automatic handling process for an<br>wagons of a tran parallel possible. Semi-trailer of any type are thed<br>on one vert, in which the trailer is rail traffic suitable. The horizontal<br>loading can be automatically. The CargoBeaner-System includes<br>precisit wagons and the JetModule (kind of valt), in which each<br>trailer is field. At the CargoBeaner forminal is on one track the<br>special setup for shurting of the JetModule installed. Target group:<br>with gatefolds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The CargoRoo trailer system consists of a wagon with two<br>associated offloading vehicles witholit cramber<br>traised by an hydraulic system which fit up to 411. After the train<br>with the CarnoRoo-Waonons is nostitoned in the terminal with |
| of technology<br>eblink                                                       | www.actsag.ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mover.eu/<br>www.boxmover.eu/                                                                                                                                                                                                                                                                                                                                                                                                                                              | ingo<br>boxtango.com/en/home                                                                                                                                                                                                                                                                                                                                                                                                   | yoBeamer.com<br>www.cargobeamer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JoRoo<br>www.uic.org/cdrom/200<br>r2001/pdf/poster/5_4/02                                                                                                                                                                                          |

| Name of technology                                                                                                                                          | Key characteristics of technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Focu                 | Is<br>Y                       | ear / | Advantages (selection)                                                                                                                                                                                                                                                                                                                                                                                                            | Disadvantages                                                                                                                                                                                                                  | Techr | Vpolor   | field (  | lse in practic                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|---------------------------------------------|
| and Weblink                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d-moc com-p<br>anied | -moo o <del>A</del><br>beinsq |       |                                                                                                                                                                                                                                                                                                                                                                                                                                   | (selection)                                                                                                                                                                                                                    | Magon | Terminal | 6uilbneH |                                             |
| CargoSpeed<br>mbp//www.akum-<br>mobiliset.net/1278/kmzepte<br>cargospeed-symblose-aus-<br>roro-loto/                                                        | CargoSpeed (cargo Fail Road Interchange at Speed) BLG<br>Consult ChimPH is an bading-system between that and voad<br>transport on the RoRe-principle. With this solution the train<br>stands between two raised patforms. The bading area of the<br>wegors can be reliaded by an filting system which is below<br>ground level, after the train retract in the terminal and the wegon<br>took position between the two raised platforms. The loading<br>area of the wegorn the or value of the wegorn<br>took position between the two raised platforms. The loading<br>area of the wegorn the order weat the thing struts.<br>Where the truck can drive on and the semi-trailer on the rotated<br>wegor can get decoupted and parts the. The alter on the rotated<br>wegorn are get decoupted and parts the. The area traites<br>afterwards in its original position and connected with the wogon<br>frame. In this way, 30 loading operations can be performed<br>simultaneaously.                                                                                                                                                                                                                                                                       | ×                    | 50                            |       | casy and rapid turn-over, possibility to bad<br>the trailers as well with conventional fit-<br>mitting fit systems, low switching costs from<br>revious systems, interoperability is given-<br>lectorion as well as variant scan be<br>andeduct, semi-trailers are located on rail<br>veel during the rail transport so that the<br>aded train can be used on nearly all<br>oues.                                                 | Increased place<br>requirement, high<br>costs for terminal<br>imfastracture/high<br>investment needs                                                                                                                           |       | ×        |          | o, only prototype                           |
| Flexiwaggon<br>http://www.flexiwaggon.se/                                                                                                                   | By the Flexiwaggon-System it is possible by a navigated hydraulic wagon. System it is possible by a navigated withough and in retractable the monsolific than dright extendible the wagons can be loaded and attewards transported by train. By transporting the entire truck, time and emissions can be reduced (as well suitable for accompanied combined transport), horizontal bading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | ×                             | 0000  | specialized terminals or devices/badring<br>amps are not required. Very flexible<br>lesigned system, as each wagon can be<br>eparated loaded and unbaded, fast turn-<br>ver - as well possible on electrified lines,<br>to ferminal timestructure investment are<br>ecessary, low capital requirements,<br>adding possible form both sides, low<br>argon height allows the usage on lines with<br>ye gauge and electrified lines. | Technology installed<br>wagon side,<br>complexity of<br>maintenance, complex<br>technology with<br>hydrahame, complex<br>components with<br>complex<br>repair/maintenance,<br>so far only individual<br>so far only individual | ×     |          |          | o, only prototype ar<br>se in singular case |
| Innovatrain<br>Containermover-3000<br>http://www.innovatrain.ch/de/<br>containermover/<br>containermover/                                                   | Inrova Train's intelligent and rapid ContainerMover-3000®<br>transhipment system is suitable for use in all treight or<br>intellightoment system is suitable for use in all treight or<br>air to lift the boxes so they can be laterally and hydraufically<br>displaced from the wapon daptor to the truck and vice versa.<br>The whole operation is remole-controlled by the rand vice versa.<br>The whole operation is remole-controlled by the truck driver and<br>takes less than 5 minutes to complete. The wishlocks are<br>remotely locked and released. The system operates on the lift<br>and lateral displacement principle. It is modular and can be<br>easily mounted on a noad wehicle chassis. In turn, the wagon has<br>to be fitted with a matching adaptor secured in place by means<br>of the container wagon spigots.                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 20                            |       | an be used at any free-platforms or<br>connecting tacks. All that is needed is a 4-<br>netre wide stretch of asphalt to be able to<br>ansfer standard swap boles, usage of<br>fifterent containers possible, no costly<br>vestment in infrastructure needed, only<br>rive way of 3 m, temote controlled<br>utomatic operation by the driver                                                                                       | Hydraulic possibly<br>susceptible high-<br>maintenance, anlsing<br>setup costs for trucks                                                                                                                                      |       |          | ×        | es, regular operati                         |
| ISU-System<br>(Innovativer<br>Sattalauflieger-<br>Umschlag)<br>http://www.raikargo.com/de/<br>http://www.raikargo.com/de/<br>sul/index.jsp<br>iSU/index.jsp | A semi-trailer handling -terminal from Rail Cargo Group,<br>developed as part of na EU research project. The innovative<br>semi-trailer transfer system, known as the ISU system, is a new<br>way of loading semi-trailers that cannot be lifted by cranses on<br>railway pocket wagens. In this system the tractoris is not<br>carried on with its comes, in this system the tractoris is not<br>carried on with its come uponetic is not carried<br>on the train. The tractor remains at the termin of the transport<br>chain. The user of the system can thus carry out the delivery and<br>collection with its come quipment. The loading rat he<br>semi-trailer can be fitted into the wagen profer<br>performed by truck or a special canse system. First, the semi-<br>trailer drives on the bading patform and is positioned and<br>uncoupted there by wheel gripper farse available as part of an<br>empotent site wagen and serve as centering and securing.<br>After available wagen is eacly for departure (ef eveloped dy<br>Ratil Cargo Abartha), the system was developed as part of an<br>EU research project that extended over several years and was<br>managed by Ratil Cargo Group and taken into regular service in<br>November 2013. | ×                    | 20                            | E     | :asy loading technology. cost-effective                                                                                                                                                                                                                                                                                                                                                                                           | Low level of<br>automation, high<br>deptyment of<br>personnel, relatively<br>long loading process                                                                                                                              |       |          | ×        | es, regular operati                         |

#### Table A3: CT-Technologies

| 2016 Ro | port on Combi | nod Transnor | t in Europa | Januan | , 2017 |
|---------|---------------|--------------|-------------|--------|--------|
| 2010116 |               | neu nanspoi  | LIII LUIOPE | Januar | / 2017 |

| Table | A3: | <b>CT-Technologies</b> |
|-------|-----|------------------------|
|-------|-----|------------------------|

| in practice                       |                      | al operations                                                                                                                                                                                                                                                                                                                                                                                                                 | y prototype                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gular operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use                               |                      | yes, tri                                                                                                                                                                                                                                                                                                                                                                                                                      | no, on                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yes, re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| r field                           | gnilbnsH             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nology                            | lsniməT              |                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tech                              | nogsW                | ×                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Disadvantages</b>              | (selection)          | High acquisition costs<br>(approx 300.000<br>EUR, nearly wree as<br>high as conventional<br>pocket wagons),<br>additional operating<br>additional operating<br>additional operating<br>complex hydraulic with<br>complex maintenance.                                                                                                                                                                                         | High costs for terminal<br>equipment                                                                                                                                                                                                                                                                                                                                                                                                                          | Investment costs,<br>special truck required,<br>lower market<br>penetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Establishment of<br>specific handling<br>terminals is required to<br>fully exploit<br>fully exploit<br>advantage of the<br>system depending on<br>timetable (currently jow<br>frequency/ runnes of<br>routes services), large<br>land use at the<br>terminal (huge<br>maneuvering area<br>maneuvering area<br>reeded, widh: 20m)                                                                                                                                                                                                                                                                                                                                                                                            |
| Advantages (selection)            |                      | No terminal required, rapid loading<br>possible, low fix costs and low capital<br>requirements                                                                                                                                                                                                                                                                                                                                | Turn-over under contact wire possible, no<br>change at wagons, trucks or containers<br>needed                                                                                                                                                                                                                                                                                                                                                                 | Bundling the benefits of rail and road transport (mass performance + flexibility) in a system, as well or companies without connecting railways. MOBLE R-container turn-over enables rapid and uncomplicated turnoving rail times and locations by the turck driver in just a few minutes. Turn-over at alloading tracks with side tuck access solue. Particularly suitable for adangerous goods. Container turn-over is independent from a special imfastructure of independent from a special imfastructure or un-vipload directly at the loading track. Uncover is independent from a special imfastructure or un-vipload directly at the loading track. Lower transport journeys by road and the fexible pre- and on-carriage support the formation of round-trips and trangular traffic on railways. | Easy to use, allows a significant reduction<br>of maintenance costs compared with<br>prevaluous systems in "Rouling Motoway"<br>(Rou.a) for low-floor wagors. Usage of<br>standard bogies and semi-trailers are not<br>needed to be specially reinforced for crane<br>fifting, compatibility with vertical loading/<br>unloading in existing traditional intermodal<br>terminal for combined transport, allows the<br>analoght of 4 m on the main European<br>orders with the minimum clearance gauge<br>changes. Investment costs LOHR terminal<br>moderate as civil engineering works are<br>not researily required, fast turn-over<br>not recessarily required, fast turn-over                                           |
| ſear                              |                      | 2010                                                                                                                                                                                                                                                                                                                                                                                                                          | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ns                                | -moɔ ɔA<br>bəinsq    |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Foc                               | Q-moc com-p<br>anied | ×                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Key characteristics of technology |                      | Pocket wagon with swiveling wagon bag (rotatable hydraulic).<br>For loading there is due to the lateral swiveling, no terminal<br>required. The wagon pocket can be swurg to both sides and<br>stabilizad with hydraulic support, the truck triver then guides the<br>trailer backwards onto the loading area. If the trailer is parked, it<br>will get decoupled and the train can depart (as well as Double-<br>wagon DUO). | The system allows fully automatic horizortial handling of<br>cortainers (not suitable for non-craneable semi-trailetes), upon<br>entry of the train the containers will be scanned, the loading<br>platform is functioning automatically, the containers will be lifted<br>on a intermediate platform and then distributed over an<br>arranging platform and from there further distributed. This<br>system requires lifting-columns, shuttles and platforms. | On a truck situated hydraulic bading system. The loading of swac-bodies and IS-C-ontainers (with adapter ) is possible without handling infrastructure and can be performed only by the truck driver (System from Rail Cargo Austria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Innovative low-floor double carriage wagon (Modalohr concept -<br>wagon "LOHR-UIC") frast Container turn-over, swap bodies<br>ametication and the static container turn-over, swap bodies<br>which are equipped with a standard bogie, the bading area can<br>be swung out at the track axis. In doing so it is possible for the<br>plateau, afterwards turned back in the longitudinal possible.<br>LOHR-System integrates simple turn-over terminals in varying<br>wagons from a diagonal angle. Due to technology and the<br>loading of standard senters which can only occur<br>horizonds, the LOHR-wagons require special terminals which<br>are equipped with a hydraulic ground system for opening<br>wagon pockets. |
| Name of technology                | and Weblink          | Megaswing/<br>Megaswing DUO<br>Megaswing ckumsindustrie<br>rse/en-us/our-<br>rse/en-us/our-<br>ouducts/productdetall/?cate<br>goryid=3&productid=11                                                                                                                                                                                                                                                                           | Metrocargo<br>tittp://metrocargoautomazion<br>.it/index.php/en/                                                                                                                                                                                                                                                                                                                                                                                               | Mobiler (KV-Roller)<br>http://www.rail.errgo.com/de/<br>Produkte_und_Innovationen/<br>MOBILER/index.jsp<br>MOBILER/index.jsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modalohr<br>titip/lohr-fr/lohr-railway-<br>system-2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Name of technology                                                                            | Kev characteristics of technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Focus                                         | Year      | Advantages (selection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Disadvantages                                                                                                                                                    | Techn | oloav fie | eld Us        | e in practice          |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------------|------------------------|
| and Weblink                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dnac com-p<br>anied<br>-moo oA<br>-moo panied | nound     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (selection)                                                                                                                                                      | nogsW | Terminal  | билопы        |                        |
| NiKraSa (Nicht<br>Kranbare<br>Sattelauflieger)<br>http://www.nikrasa.eu/de/star<br>tseite.htm | The NiKRASA-system makes it possible to transfer non-crane-<br>able semi-trailers from road to rail within the existing standards<br>and infrastructure. The system consists of two parts – the<br>terminal platform and the transport platform. The transport<br>platform fits exactly into the terminal platform like a negative into<br>a positive. The terminal tractor positions the trailer in the centre<br>of the transport platform. The portal care or reach stacker's<br>standard grappiers come into play. They latch onto the lifting<br>pockets of the NiKRASA transport platform are loaded as a single unit.<br>The trailer is positioned in the pocket wagon exactly in line with<br>the treatile and the kingpin is locked into place. The loading<br>process is now complete. | ×                                             | 2014      | No changes at the wagon, the semi-trailer<br>or the business processes required, no<br>additional investments, the already existing<br>transshipment sites in the terminals for<br>combined transport can be used.                                                                                                                                                                                                                                                                      | Higher weight, each<br>trailer must turned<br>individually, time-<br>consuming                                                                                   |       | ~         | yes,          | regular operation      |
| Rail-Tug<br>http://www.railtug.de/projekt.<br>html                                            | Imovative "Tugmastersystem" for rolling loading of trailers on<br>low-floor wagons, integration of non-craneable trailers in<br>unaccompanied combined transport with standard-port-traction-<br>engine and -wagons, reconstruction of a tugmaster, so that the<br>semi-trailer hook into a draw-bar, and the tugmaster is<br>transportet on the wagon as well whereby the tugmaster drives<br>sidewards the wagon and leads the trailer on the wagon and<br>then decoupled. Therfore a tractor is required, where a driver<br>controll the tugmaster.                                                                                                                                                                                                                                           | ×                                             | 2010      | easy, fast tum-over, no ramps required                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Investment- and<br>modification costs, so<br>far only theoretical<br>concept                                                                                     |       | *         | ron conc      | nly theoretical<br>ept |
| ResoR@ail                                                                                     | The level of the terminal is adjusted to the height of the wagons,<br>so that trucks can directly drive on the wagons. After the truck on<br>the wagon, the wagon floor will be lowered and and locked (with<br>or without tractor). Thus, the train can run with a lower structure<br>gauge. There is no need for ramps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                             | 2010      | easy, fast tum-over, no ramps required                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wagons with special<br>lifting technique are<br>required (high<br>invesment costs), as<br>well as a particular<br>terminel. so far only a<br>theoretical concept | ×     | ×         | no, c<br>cono | nly theoretical<br>ept |
| T rimoder<br>http://www.railtug.de/projekt.<br>httml                                          | 45- foot container for combined transport, which fulfills ISO and DIN standards and therfore effective use in road and rail traffic. It combines with light chassis, so the additional payload can be up 22t Besides ist craneable, stackable, four-sided loadable and pallet-wide. Hence it has a lots of advantages compared to the trailer.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                             | 2013      | Alternative to trailer, in comparison 19-22% additional payload (29 tonnes additional payload possible, only 4,9 tonnes additional payload possible, onny 4,9 tonnes own weight), simultaneous compliance of ISO- and DIN-Norm, efficient loading with pallet possible, cranable and stackable (less area usage), combined benefits of trailer (loading capacity) and containers (craneability/ stacking capacity), good investment proportion, good suitable for RoRo/ShortSeaShipping |                                                                                                                                                                  |       | *         | nuku          | цмо                    |
| Source: BSL Transportation ar                                                                 | nalysis, websites of technology providers, www.zukunft-mobilitaet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | de, llotech -Sca                              | ndria Ade | d-on Projekt Innovative Technologien Endberich                                                                                                                                                                                                                                                                                                                                                                                                                                          | ht (2012); www.sgkv.de                                                                                                                                           |       |           |               |                        |

#### Table A3: CT-Technologies

Annexes

#### Table A4: Port Profile – Algeciras (ES)



#### Table A4: Port Profile - Barcelona (ES)





Table A4: Port Profile - Valencia (ES)

| Valencia – key port characteris                               | tics 2015                           |
|---------------------------------------------------------------|-------------------------------------|
| No. of container terminals                                    | 13                                  |
| No. of container terminal operators                           | 12                                  |
| No. of berths                                                 | 22                                  |
| Maximum draught (in m)                                        | 14                                  |
| No. of Containerships                                         | 3,197                               |
| No. of containers handled                                     | 4,615,196                           |
| No. of General Cargo handled (conventional and containerised) | 63,102,097                          |
| Main area of origin. / destination (on the basis of TEU       | China                               |
| Annual trend RoRo growth                                      | + 10.54 %                           |
| No. of Rail Companies operating                               | 4                                   |
| Ra                                                            | ail Freight Corridor<br>Connections |
| ontainer carried                                              | C6 Mediterranean                    |



Source: http://www.valenciaport.com, Statistical report December 2015

#### Table A4: Port Profile - Tarragona (ES)



- Introduction of the UIC-standard gauge and electrification of the new Port of Tarragona intermodal terminal access
- General fire-prevention perimeter water network on the Cantàbria dock and adaptation of intermodal terminal of the Port of Tarragona
- Renovation of railway tracks connecting to dock Reus Levelling and drain system project of the centre area near railroad tracks, Cantàbria dock

Tarragona – key port characteristics 2015 No. of container terminals 4 No. of Berths 113 No. of Terminal operator 8 Maximum draught (in m) 13.25 No. of containers handled (without transit) 59.841 No. of general cargo vessels 802 General Cargo throughput (in tonnes) 2,237,438 1,333,254 Tonnes carried by rail No. of wagons total 55,810 Main area of destination. (on the basis of tonnes) Spain Main area of origin. (on the basis of tonnes) Algeria



#### 68

#### Table A4: Port Profile - Marseille-Fos (FR)



#### Table A4: Port Profile – Genova (IT)



Source: http://www.porto.genova.it/; Genova Handbook 2014-2015, ESPO Annual Report 2014\_2015



#### Table A4: Port Profile - Livorno (IT)



Source: Allegato Statistico 2015; http://www.porto.livorno.it/en-us/homepage.aspx; Livorno Port Presentation

9

5

9

14 17

14.4

4

20

90 15

3,283

32,712,473

Algeciras

+ 26.5 %

+ 17.1 %

70
1

15

10,870,222

66,731

- 13.9 %

- 1.5 %

#### Table A4: Port Profile - Civitavecchia (IT)



### Table A4: Port Profile - Ravenna (IT)



| Ravenna – key port                  | characteristics 2015             |
|-------------------------------------|----------------------------------|
| No. of container terminals          | 11                               |
| No. of container terminal operators | 11                               |
| No. of berths                       | 2                                |
| Maximum draught (in m)              | 10.5                             |
| No. of vessels (2007)               | almost 8,000                     |
| Handled cargo (2007) in mln. tons   | 26.3                             |
| Important markets                   | Middle and Far East              |
| Main trade markets                  | Eastern Mediterranean; Black Sea |
| Connections<br>RFC3 ScanMed         | Ravenna Port                     |

Source: Statistical Data Year; http://www.tcravenna.it/; http://www.worldportsource.com/



### Table A4: Port Profile – Trieste (IT)





16

33

58

18

70

> 400

-62%

- 15.5 %

#### Table A4: Port Profile – Ancona (IT)



#### Table A4: Port Profile - Naples (IT)



- 7 coastal warehouses for bulk liquid products, mineral oils, vegetable,
- and chemical products.
- 2 terminals for timber and cellulose with a total surface area of
- approximately 35,000 qm
- 2 terminals for wheat products
  3 container terminals, with a total surface area of 200.000 qm
- 2 specialised in lo-lo traffic at Bausan and Flavio Gioia Docks
- □ 1 specialised in ro-ro traffic at Bausan Dock.



Source: Statistical Data\_Year; https://www.port.venice.it, ESPO Annual Report 2014\_2015

#### Table A4: Port Profile - Taranto (IT)



#### **Container Terminal Equipment**

- 10 ship-to-shore gantry cranes
- 1 mobile harbour crane
- 22 rail-mounted gantry cranes
- 3 reach stackers 5 side loaders 62 prime movers



Source: http://harboursreview.com/port-palermo.html, ESPO Annual Report 2014\_2015

aranto Port



# Koper- key port characteristics 2015 No. of container terminals 12 No. of container terminal operators 1 26 2,032 Maximum draught (in m) 17.2 No. of containers handled (in tonnes) 7,741,976 General Cargo throughput (in million tonnes) 1,475,076 Average of trains per day 52 **RFC5 Baltic Adriatic RFC6** Mediterranean Koper Port RFC6

\*Forecast

Source: Detailed Statistics 2012, 2013, 2014, 2015; http://www.luka-kp.si/; SETA Port Presentation

### Table A4: Port Profile - Koper (SI)

#### Table A4: Port Profile - Rijeka (HR)





Rijeka Gateway Project\*\*

Rijeka Gateway project known as a Rijeka Traffic Route Redevelopment Project is a complex development program which aimed at rehabilitation and modernisation of the entire port complex and improving the port traffic connection with the international road and railway corridors.

\*\*According to North Adriatic Port Association

Source: KPI Report 2014, 2015; Annual Report 2014; Port Information Guide May 2016; http://www.portsofnapa.com/port-of-rijeka, European Parlament

#### Thessaloniki (GR) Seaborne Throughput Ν 14,52 12,98 14,41 15,25 0.35 0.35 Ν 0.32 0.32 N Ν С S 2012 2013 2014 2015 2012 2013 2014 2015 S Total (m Tonnes\*) Container (m TEU) R F 67.40 58.77 **RoRo traffic** 44.00 47.91 R thousand Tonnes 2012 2013 2014 2015 **Container Terminal Conventional Cargo Termina** 4 cranes (2 post panamax) General Cargo Linkes by a double track Solid Bulk Cargo railway to the national Liquid Bulk Cargo railway networks Ro-Ro vehicles

| Thessaloniki – key port character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ristics 2015        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| lo. of container terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                   |
| lo. of Berth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                  |
| /laximum draught (in m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                  |
| lo. of vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,983               |
| Container throughput**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237,564             |
| Seaborne traffic (tare weight not incl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14,508,342          |
| Seaborne throughput general cargo (tonnes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,003,622           |
| RoRo Growth (2014/2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + 40.68 %           |
| RoRo Growth (2012/2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 25.14 %           |
| Received a second secon | CT<br>saloniki Port |

Table A4: Port Profile – Thessaloniki (GR)

\*\*Transshipment units are counted once

Source: http://www.thpa.gr; Statistics 2015, 2014, 2013, 2012

#### Table A4: Port Profile - Piraeus (GR)



4 Empty Reach Handlers

1 Container Mover 





Source: PPA Statistics; http://www.olp.gr/en/stats; ESPO Annual Report 2014/2015



#### Table A4: Port Profile - Izmir (TR)

#### Table A4: Port Profile - Ambarli (TR)



Source: http://icce2016.com/en/Istanbul-Ambarli-Port-Facilities-in-partnership-with-ALTAS.html, http://www.altasliman.com/en/sirket\_profili\_istatistikler.php

## Table A4: Port Profile – Haydarpasa (TR)

### Haydarpasa (TR)



#### **Terminal Equipment**

- Operations are carried out by 4 quayside gantry cranes of 40 tons capacity
- 18 rubber tired transtainers
- 9 reach stackers
- 8 empty container forklifts
- 9 shore and yard cranes
- 6 mobile cranes.

| Haydarpasa – key port characte                       | ristics |
|------------------------------------------------------|---------|
| No. of container terminals                           | 5       |
| No. of berths                                        | 21      |
| Maximum draught (in m)                               | 11-12.2 |
| No. of Operators                                     | 1       |
| No. of Vessel                                        | 1,169   |
| No. of Vessel (Ro-Ro Terminal)                       | 360     |
| Container Handling Capacity in 2014 (TEU/Year)       | 654     |
| Container Handling Capacity in 2014<br>(Tonnes/Year) | 1,913   |



Source: Annual Statistic TR 2009-2013, 2008-2012; Annual Report 2014 TR

#### Table A4: Port Profile - Mersin (TR)



| Mersin – key port characteri                  | stics     |
|-----------------------------------------------|-----------|
| No. of berths                                 | 21        |
| Maximum draught (in m)                        | 10 - 14   |
| No. of Operators                              | 1         |
| No. of Vessel approx. per year                | 1,500     |
| Container Handling Capacity (TEU/year)        | 1,800,000 |
| General Cargo Handling Capacity (tons/year)   | 1,000,000 |
| Ro-Ro Handling Capacity (units-vehicles/year) | 150,000   |
| No. of railway lanes                          | 4         |



Source: http://en.mersinport.com.tr

### Table A4: Port Profile – Ust-Luga (RU)

### Ust-Luga (RU)





Port Equipment



#### **Railway Equipment**

St.Petersburg junction:

- Two-lane railway over the entire length, elongation of the station yards of the way station up to 1,050m
- Luzhskaya junction:

Seven stations (three of them are already commissioned)
 In future 65% of the total cargo volumen is expected to be







Source: http://www.ust-luga.ru

### 78

#### Table A4: Port Profile - St. Petersburg (RU)



### Table A4: Port Profile - Novorossiyk (RU)



| Novorossiyk -                             | - кеу | port ch | aracteristics        |
|-------------------------------------------|-------|---------|----------------------|
| Indicator                                 | Year  |         | Units of measurement |
| No. of container terminals                | 2015  | 2       | Number               |
| No. of container terminal<br>operators    | 2015  | 8       | Number               |
| No. of berths                             | 2015  | 41      | Number               |
| Maximum draught                           | 2015  | 24.5    | in m                 |
| No. of containers handled                 | 2014  | 177,886 | Number               |
| Total length of railway lines             | 2014  | 22,409  | m                    |
| No. vessel calls on<br>Container Terminal | 2014  | 177     | Number               |
| No. vessel calls on<br>Timber Terminal    | 2014  | 233     | Number               |
| and a start                               | -     |         |                      |



- railway transporters of any kind (4-axle - 32-axle, cargo capacity from 64 mt till 500 mt, area type, platform type and linked type
- covered waggons;
- open-top waggons; .
- multipurpose platforms;
  - fitting platforms;
- railway station is around 800 wagons (almost 300 thousand wagons a year).

The daily flow at the Novorossiysk



Source: http://www.nntp.info/en/; www.nle.ru/en/about/infographics/; http://novpt.ru/info-port-eng.php; http://yankeerussia.com/index.php/home/categories/economy/item/76-novorossiysk-the-largest-sea-port-in-russia; Novorossiysk-Commercial-Sea-Port-AnnualReport-2015.pdf; Financial Report 2008

#### **Rail facilities**

### Table A5: Origin-Destination-Matrix TEU

| Image: interpart of the interpart |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1200         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 428         434         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1         1         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 110         141         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0         1         1         0         0         0         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: |
| 145         00         127         004         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034         034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1         0.02         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006         1006 <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1         1         0         0         0         0         0         0         0         0         0         0         1         263         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.26         12.66         12.4         1         0         1         0         1         0         1         0         1         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 46.4       0.0       7.10       28.4       0.01       28.4       0.01       28.4       0.01       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04       1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 44.4         0.00         7.8         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.00         0.21         0.01         0.02         0.01         0.02         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 800         100         000         000         010         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1       32.43       1       0.06       131       2.04       91.70       5       0.06       57.600       35.6       1       1       0.02       1       1       0.02       0.19       0.10       1       1       0.02       0.19       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.00         287         0.14         0.14         0.10         5.10         5.10         5.10         0.15         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ide         18.00         0.010         0.111         0.020         0.111         0.020         0.111         0.020         0.111         0.020         0.111         0.020         0.111         0.020         0.111         0.010         0.111         0.010         0.111         0.010         0.111         0.010         0.111         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17.89       17.80       1       0       0       0.40       0.40       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matrix         Matrix<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| addm         addm <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ope         i         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39         7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### Table A5: Origin-Destination-Matrix Tonnes

| 埴                                     | 62.6    | 0.1      | 62.8     | 0.0           | 29,4      | 94.8  | 87.5     | 31.5     | 40.8            | 52.6     | 61.2   | <b>5</b> 9. 1 | 95.2    | 18.7    | 60.0     | 0.0    | 0.4        | 63.3       | 15.4   | 24.2   | 10.7     | 52.9      | 0.0     | 42.3        | 55.4   | 95.1         | 0.04       | 82.0   | 54.0     | 80.9       | 05.9      | 00.5     | 62.4   | 19.0      | 27.0  | 0.0     | 35.8             | 30.8      | 0.0   | 80.6            | 134      |
|---------------------------------------|---------|----------|----------|---------------|-----------|-------|----------|----------|-----------------|----------|--------|---------------|---------|---------|----------|--------|------------|------------|--------|--------|----------|-----------|---------|-------------|--------|--------------|------------|--------|----------|------------|-----------|----------|--------|-----------|-------|---------|------------------|-----------|-------|-----------------|----------|
| P                                     | 26      |          | 1 996    |               |           |       | õ        | 13       | ۰<br>9          | ÷        |        | 9 441         | 9 321   | ÷       | 24(      |        |            | 10         | 115    |        | -2       | 8         |         | 56          | 4      | 5 <u>1</u> 5 | 4 4<br>    |        |          | ŝ          | 140       | 210      | 4      | 14        |       |         | 4                |           |       | Ř               | 4 92     |
| Ofher World                           |         |          | 2.8      |               |           |       |          |          | 0.0             |          |        | 0.0           | 383.8   |         |          |        |            |            |        |        |          | 0.1       |         | 2.8         |        |              |            |        |          |            |           |          | 0.1    |           |       |         | 0.7              |           |       |                 | 390.0    |
| Shina                                 |         |          | 4        |               |           |       |          |          |                 |          | 6      | 6             | 0.09    |         |          |        |            |            | -      |        |          |           |         | 6           |        |              |            |        |          |            |           | 2.72     |        |           |       |         | -                |           |       |                 | 4 2.81   |
| Ofher Europe                          | 07      |          | 0.1      |               | -         | -     | +        | -        |                 | -        | 0.1    | 96 0.2        |         | 16      |          |        | _          | 00         | 44 0.2 |        |          | _         | _       | 0.2         | _      | +            | +          | +      | -        | 88         |           | 02       | 0.8    |           | 0:0   |         | 0.0              |           | _     | _               | 04 1.9   |
| United Kingdom                        | 41.     |          |          |               |           |       |          |          |                 |          |        | 11.           |         | ö       | 33       |        |            | 45.        | 418.   |        | 9        |           |         | ~           | _      |              | -          | ,      |          | 5          |           | 132.     |        |           |       |         |                  |           |       |                 | 7 661.   |
| Ukraine                               |         |          |          |               |           |       |          |          |                 |          |        |               |         |         | 0.1      |        |            |            |        |        | 709.9    |           |         | 0.3         |        |              | 7          |        |          |            |           |          |        |           |       |         |                  |           |       |                 | 711.5    |
| Turkey                                | 0.19    |          | 0.10     |               |           |       |          |          |                 |          |        | 91.26         | 106.52  |         | 400.35   |        |            |            | 6.05   |        |          |           |         | 0.12        |        |              |            |        |          | 207.87     |           |          |        |           |       |         |                  |           |       |                 |          |
| bnsheztiwS                            | 21.07   |          | 45.92    |               |           |       |          |          |                 |          |        |               | 63.53   |         |          |        |            |            | 58.73  |        |          |           |         | 90.56       |        |              |            | 3.50   |          |            |           |          | 20.96  |           |       |         |                  |           |       |                 | 04.28    |
|                                       |         | ╞        | 22       |               | -         | +     | +        | 8        | 33              | -        |        | 69            | 5       |         |          |        | -          |            | 91     |        |          | 8         | -       | 15          | 88     | 69 9         | 2          | +      | -        | 22         |           | 05       |        | 8         |       |         | H                |           | -     | 51              | 46 16    |
| nebewS                                |         |          | 718.     |               |           |       |          | ۳        | 0               |          |        | 40            | 2067.   |         |          |        |            |            | 590    |        |          | °         |         | 369         | 373.   |              | >          |        |          | ŝ          |           | 0        |        | -         |       |         |                  |           |       | °               | 4175     |
| nisq8                                 |         |          | 96.780   |               |           |       |          |          |                 |          |        | 18.93         | 197.37  |         |          |        |            | 36.55      | 89.56  |        |          |           |         | 6.56        |        | 3.15         | 00.142     |        |          |            |           |          | 22.33  | 2.40      |       |         |                  |           |       |                 |          |
| BINBVOIS                              | 5.84    |          | 1.20     | 0.01          |           | t     | 5.99     | 8.08     |                 |          | 0.28   |               | 8.83    | 0.20    | 4.16     |        |            |            |        |        |          |           |         | 3.27        |        |              | t          | T      | 0.36     | 0.44       |           |          | 1.49   |           |       |         |                  | Ħ         | T     |                 | 0.15 2   |
|                                       | 67      | -        | -        |               |           | -     |          | 78 22    |                 |          |        |               | 23 2E   |         | 96       |        |            |            |        |        |          | _         | _       | 61          | _      | +            | -          | +      |          | 4          | 93        | $\vdash$ | -      | _         |       |         | H                | -         | -     | _               | 55 361   |
| Slovakia                              |         |          |          |               |           |       |          | 595.     |                 |          |        |               | 48      |         |          |        |            |            |        |        |          |           |         | 46.         |        |              |            |        |          |            | 446.      |          |        |           |       |         |                  |           |       |                 | 1137.    |
| Serbia                                |         |          |          |               |           |       | 1.08     |          |                 |          |        |               | 6.53    |         | 0.14     |        |            |            |        |        |          |           |         | 3.96        |        |              |            |        |          |            | 1.88      |          | 0.02   |           |       |         |                  |           |       |                 | 13.61    |
| eissuA                                |         |          | 9.03     |               |           |       | 368.41   |          |                 | 136.75   |        | 279.89        | 80.83   |         | 0.03     |        |            |            | 1.80   |        |          |           |         | 6.03        | 4.94   | 24.68        | 100 24     |        |          | 210.54     |           |          |        |           |       |         |                  |           |       |                 |          |
| EINEMON                               |         | F        | 6.93     |               | 9.37      |       | ľ        | T        |                 | E        |        |               | 5.36    |         | 5.71     |        | H          |            | 5.59   |        |          |           |         | 8.13        | 0.45   | +            | Ì          | ſ      |          |            |           |          | 0.35   |           | -     |         | 0.16             |           | +     |                 | 1.06 1   |
| ojavalog                              | 32      |          | .10 304  |               | 12        | 1     |          | -        |                 |          |        |               | .93     |         | ő        |        |            |            | ű      |        |          |           |         | ¥           | 8      |              | ł          | -      |          |            |           | R        | Ĺ      |           |       |         | Í                |           | +     |                 | 71 49    |
| Portugal                              | ő       |          | 73 0.    |               |           | 5     |          | R        |                 |          |        |               | 37 9.   |         |          |        |            |            | 90     |        |          |           |         | 7           | o      | ļ            | Ļ          |        |          | 12         |           | 219.     |        |           |       |         |                  |           | 4     |                 | 229      |
| Poland                                |         |          | 151.7    |               |           | 6     |          | 1824.0   |                 |          |        |               | 680.6   |         |          |        |            |            | 15.0   |        |          |           |         | 13.5        |        | I.           |            |        |          | 0.         |           |          |        |           |       |         |                  |           |       |                 |          |
| Norway                                | 5.11    |          | 0.08     |               |           |       |          | 0.01     |                 |          |        | 0.10          | 37.29   | 0.02    |          |        |            |            | 38.40  |        |          | 0.16      |         |             |        |              |            |        |          | 1.60       | 0.08      | 0.66     |        | 1.45      |       |         |                  |           |       |                 | 84.96    |
| spnsheiteds                           | 37.97   |          | 0.75     |               |           | 0.01  |          | 59.93    |                 |          |        |               | 784.08  | 2.47    | 10.93    |        |            | 971.71     | 59.90  |        |          |           |         |             | 72.20  | 171.26       | 20.01      | 8.03   | 0.01     | 14.64      |           | 66.43    |        | 82.82     |       |         |                  |           |       |                 | 155.26   |
| PILIODOOPILI                          |         |          |          |               | -         |       |          |          |                 | $\vdash$ |        |               | 57      | .53     |          |        |            | 0,         | 10     |        |          |           | ť       |             |        | 4            | +          |        | .53      |            | 0.09      | Η        |        | .4        | 5.76  |         | H                |           | +     | -               | 3.90 90  |
| einobooe <b>m</b>                     | _       | -        | 67       |               | -         | -     | 12       | 12       |                 | -        |        | 24            | 4       | ù       | 40       |        | _          |            | 31     |        |          |           |         |             | _      | _            | u<br>a     | 3      | 5<br>2   | 96         | 07        | 59       | -      |           | 07 25 |         | H                | +         | _     | _               | 35 128   |
| Շուցաթուց                             |         |          | 262.     |               |           |       | o        | ö        |                 |          |        | 1872.         | 89.     |         | ö        |        |            |            | 180.   |        |          |           |         |             |        |              | -          | -      |          | ö          | 0         | Ö        |        |           | ö     |         |                  |           |       |                 | 2408.    |
| eineudtij                             |         |          | 0.10     |               |           |       |          |          |                 |          |        |               | 0.06    |         |          |        |            |            |        |        |          | _         |         | 0.08        |        | 1.73         |            |        |          |            |           |          |        |           |       |         |                  |           |       |                 | 0 1.97   |
| Latvia                                |         |          |          |               |           | 894.7 |          |          |                 |          |        |               |         |         |          |        |            |            |        |        |          |           |         |             |        |              |            |        |          |            |           |          |        |           |       |         |                  |           |       |                 | 894.7    |
| र्राष्ट्र।                            | 208.73  | 0.06     | 802.60   |               |           |       |          | 355.72   |                 |          |        | 536.07        | 655.20  |         | 1.68     |        |            |            |        |        | 0.71     | 244.31    |         | 864.77      |        |              |            |        |          |            | 4.32      |          | 143.84 |           | 0.98  |         |                  |           |       |                 |          |
|                                       |         |          | 03 3     |               | -         | +     | +        | -        |                 | -        |        | -             | 25 11   |         |          |        |            |            |        |        |          |           | +       | 83          | +      | +            | +          | +      | $\vdash$ |            |           | 84       |        |           |       |         | 00               | +         | +     | _               | 94 18    |
| Italy via CH                          |         |          | 1758     |               |           |       |          |          |                 |          |        |               | 5 1236  |         |          |        |            |            |        |        |          |           |         | 464         |        |              |            |        |          |            |           | 59       |        |           |       |         | 500              |           |       |                 | 3 4018   |
| TA siv ylsti                          |         |          |          |               |           |       |          |          | 314.3           |          |        |               | 252.25  |         |          |        |            |            |        |        |          |           |         | 32.82       |        |              |            |        |          | 3.3        |           |          |        | 28.75     |       |         |                  |           |       |                 |          |
| Ireland                               |         |          |          |               | T         |       |          |          |                 |          |        |               |         |         | 0.64     |        |            |            | 15.60  |        |          |           |         |             |        | +            |            |        |          | 0.02       |           |          |        |           |       |         |                  | T         | T     |                 | 16.27    |
| Клевин                                | 25.77   |          | 0.84     |               |           | T     | 3.71     | 97.18    |                 |          |        |               | 02.92   |         |          |        |            |            |        |        |          |           | T       | 97.93       | 4.14   | 0.0          | T          | t      | T        | 50.10      | 13.28     |          | 52.39  |           |       |         | 28.13            |           | T     |                 | . 66.90  |
|                                       | 07 12   |          | 60       |               | -         | +     | $\vdash$ | ¥        | 24              |          | 02     |               | 30 150  |         |          |        |            |            | 54     |        |          | 4         | -       | <i></i>     |        | +            | +          | +      | -        | 82 25      | 6         | H        | 98     | _         |       |         |                  | +         | +     | _               | 72 290   |
| Greece                                | 97 0.   |          | 91 0.    |               |           | -     | +        | 94       | ö               |          | ÷.     | 84            | 6       |         | 97       |        |            |            | 34 0.  |        |          | 18 0.     | -       | 73          | _      | 6 8          | 5 6        | . 29   | -        | 23 4.      | 32        | 4        | ö      | 26        |       | 00      | 02               | 8         | -     | 13              | 35 47.   |
| ດອະເມຊນ                               | 1479.   |          | 448.     |               |           |       |          | 3725.    |                 |          |        | 75.           |         |         | 819.     |        |            |            | 5357.  |        |          | 72.       |         | 431.        |        | 594.         | 5 5        | 38     |          | 169.       | 44.       | 1115.    |        | 1008.     |       | 0       | 0                | 90        |       | 380.            |          |
| France                                | 4.97    |          | 42.76    |               |           |       |          | 0.02     |                 |          |        |               | 36.62   |         | 4.64     |        |            |            | 35.17  |        |          | 09.35     |         | 36.19       |        | 2.72         | 0.74       |        |          |            |           | 46.16    |        | 0.13      | 0.21  |         | 5.78             |           |       |                 | 25.43    |
| DURING                                |         |          | .57 6    |               |           |       |          | .38      |                 |          |        | 3.63          | 5.73 6  |         | 2.30     |        |            |            | 3.41 8 |        |          | 2.12 4    |         | 5.82        |        | 8            | 200        |        | F        | 2.63       |           | . 78     |        | 1.78      |       |         | 7.07             |           | +     |                 | 1.14 27  |
| Pueluia                               |         | $\vdash$ | 7        | $\vdash$      |           | -     |          | ÷        |                 |          |        | 4             | 06 4£   |         | .*       |        |            |            | 175    | 23     |          | • 1       |         | #           | -      | -            | 1          | 32     |          |            |           | ,t<br>,4 |        |           |       | H       | Ľ                |           | +     |                 | 61 337   |
| sinois∃                               | -       |          | 10       |               |           | +     |          | +        |                 | F        |        | 67            | 92 0.   |         |          |        |            |            | 71     | 24.    |          |           |         | 8           | +      | +            | +          | 26 21  |          | $\vdash$   |           | 70       |        | 50        |       | H       | H                | -         | +     | 4               | 88 45.   |
| Denmark                               | 4       |          | .0       |               |           |       |          |          |                 |          |        | 2             | 152.    | 0       |          |        |            |            | 364.   |        |          |           |         | 0           |        |              | 1          | 6      |          | 27         | 9         | Ö        |        | Ö         |       |         | 0                | 4         | 4     |                 | 1 526.   |
| Czech Republic                        | 51.8    |          | 50.5     |               |           |       |          |          |                 |          |        |               | 2274.2  | 62.1    |          |        |            |            | 288.9  |        |          |           |         | 221.6       |        | 196.2        |            | 5.2    |          | 2331.5     | 181.1     |          |        |           |       |         | 1.5              |           |       |                 |          |
| Croatia                               |         |          |          |               |           |       |          | Γ        |                 |          | 0.07   |               | 7.02    |         | 10.01    |        |            |            |        |        |          |           |         | 4.22        | 0.03   |              |            |        | 2.09     |            | 4.72      |          | 1.45   |           |       |         |                  |           |       |                 | 29.61    |
| SIS                                   |         |          | 1.72     |               |           |       |          | 5.57     |                 | 15.86    |        |               | 2.41    |         |          |        | 0.37       |            |        |        |          |           |         | 0.46        | 0.20   |              |            |        |          | 69.98      |           |          |        | 2.78      |       |         |                  |           |       |                 | 99.35    |
| Bulgaria                              |         |          | 13.88    |               |           |       |          |          |                 |          |        |               | 0.04    |         |          |        |            |            |        |        |          |           |         |             |        |              | 2 6.4      | 5.5    |          | 0.03       |           |          |        |           |       |         |                  |           |       |                 | 17.49    |
| bns sinso <del>d</del><br>BriwogesteH |         |          |          |               |           |       |          |          |                 |          |        |               |         |         |          |        |            |            |        |        |          |           |         |             |        | T            |            |        |          |            | 0.11      |          |        |           |       |         |                  |           |       |                 | 0.11     |
| աությթց                               | 9.71    |          |          |               | 1.06      |       | 8.22     | 6.83     |                 |          |        | 85.47         | 11.49   | 2.21    | 49.22    | 0.00   |            |            | 40.87  |        |          | 20.41     |         | 18.72       |        | T            | 08.80      | 200    |          | 22.00      |           | 44.10    | 31.20  |           |       |         |                  |           |       |                 | 138.20   |
| Belarus                               |         |          | F        | $\vdash$      |           | -     |          |          |                 | $\vdash$ |        | 4             | .78 1   |         | $\vdash$ |        |            |            | 18     |        |          | -         |         | 5           |        | 18           | ľ          | +      | $\vdash$ | 1.94       | H         | °        |        | H         | H     | H       | H                |           | +     | -               | 32,91,32 |
| PLISDY                                |         | ſ        | 3.50     |               | F         | t     | f        | 7.90     | 5.88            | F        | 9.66   |               | 0.10 7  | F       | 9.68     | F      |            |            | 8.85   |        |          | 0.83      |         | 71.70 6     |        |              | 000        | 20.00  | F        | 12.08 0    | 8.89      |          | 7.32   | 0.76      | F     | F       |                  | đ         | 1     | ١               | 7.24 8   |
| O O                                   |         |          | 13       |               |           |       |          | =        | ~               |          | °.     |               | 161     |         | 16       |        |            |            | 1      |        |          |           |         | 5           |        |              | ÷          | -      |          | 33         | 7         |          | 7      | 5         |       |         |                  |           |       |                 | 306      |
| T(<br>fonnes                          |         |          |          | nd Herzegowin |           |       |          | public   |                 |          |        |               |         |         |          |        | АТ         | н          |        |        |          | Ing       | ia      | spu         |        |              |            |        |          |            |           |          |        | pu        |       |         | mobgin           | ədo.      |       | arld            |          |
| fotal Vol⊡<br>n 1,000 T               | Austria | 3e larus | 3e Igium | 3osnia ar     | 3ulga ria | SIS   | Croatia  | Czech Re | <b>De nmark</b> | Estonia  | inland | rance         | Germany | Gree ce | Hungary  | reland | taly via A | taly via d | taly   | a tvia | ithuania | u xe mb u | Aacedon | Ve the rlar | Vorway | Poland       | oin gui to | Russia | se rbia  | slova ki a | slove nia | spain    | weden  | switzerla | urkey | Jkraine | <b>Jnited Ki</b> | Other Eur | China | <b>Other Wo</b> | otal     |

The 2016 Report on Combined Transport was created by



BSL Transportation Consultants GmbH & Co. KG Cölln Haus Brodschrangen 3 – 5 20457 Hamburg GERMANY

T +49 (0) 40 22 63 670 00

info@bsl-transportation.com www.bsl-transportation.com

Published by



### **International Union of Railways**

16 rue Jean Rey 75015 Paris FRANCE

T +33 (0) 1 44 49 20 20

gehenot@uic.org www.uic.org

Hamburg/Paris, January 2017, 1st Edition



# ETF

Editions Techniques Ferroviaires Railway Technical Publications Eisenbahntechnische Publikationen

16 rue Jean Rey - F 75015 PARIS www.shop-etf.com

Printed by International Union of Railways - Railway Technical Publications (ETF) 16, rue Jean Rey 75015 Paris - France

Cover and layout: Ludovic Wattignies / © ETF Publication Proofreading: Audrey Mignot / © ETF Publication Printer: Acinnov February 2017 Dépôt légal February 2017

ISBN 978-2-7461-2580-3



**BSL Transportation Consultants GmbH & Co. KG** Cölln Haus Brodschrangen 3 – 5 20457 Hamburg GERMANY

T +49 (0) 40 22 63 670 00

info@bsl-transportation.com www.bsl-transportation.com



International Union of Railways 16 rue Jean Rey 75015 Paris FRANCE

T +33 (0) 1 44 49 20 20

gehenot@uic.org www.uic.org

